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Preface 

The present lecture notes describe stochastic epidemic models and methods for their 
statistical analysis. Our aim is to present ideas for such models, and methods for their 
analysis; along the way we make practical use of several probabilistic and statistical 
techniques. This will be done without focusing on any specific disease, and instead 
rigorously analyzing rather simple models. The reader of these lecture notes could 
thus have a two-fold purpose in mind: to learn about epidemic models and their 
statistical analysis, and/or to learn and apply techniques in probability and statistics. 

The lecture notes require an early graduate level knowledge of probability and 
statistics. They introduce several techniques which might be new to students, but our 
intention is to present these keeping the technical level at a minlmum. Techniques that 
are explained and applied in the lecture notes are, for example: coupling, diffusion 
approximation, random graphs, likelihood theory for counting processes, martingales, 
the EM-algorithm and MCMC methods. The aim is to introduce and apply these 
techniques, thus hopefully motivating their further theoretical treatment. A few 
sections, mainly in Chapter 5, assume some knowledge of weak convergence; we hope 
that readers not familiar with this theory can understand the these parts at a heuristic 
level. 

The text is divided into two distinct but related parts: modelling and estimation. 
The first part covers stochastic models and their properties, often assuming a large 
community in which the disease is spread. The second part deals with statistical 
questions, that is, what can be said about the model and its parameters, given that 
an epidemic outbreak has been observed. The second part uses results from the first 
part, and is hence not suited for reading without having read the first part. 

The lecture notes are self-instructive and may be read by anyone interested in 
the area. They are suited for a one-semester course of approximately 15 two-hour 
lectures. Most chapters may be presented in one such lecture. Chapters that need 
somewhat longer treatment are Chapters 5, 6, and 8. Each chapter ends with a few 
exercises giving extensions of the theory presented in the text.. 

These notes were written during the spring term 1999 when the authors gave a 
joint graduate course in the Departments of Mathematics at Stockholm and Uppsala 
Universities. We thank the participants in the course: Anders Bjorkstrom, Nestor 
Correia, Maria Deijfen, Peter Grenholm, Annika Gunnerhed, Allan Gut, Jemila Seid 
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Hamid, Stefan Israelsson, Kristi Kuljus, Johan Lindback and Habte Tewoldeberhan 
for their constructive criticisms of the manuscript as well as for pointing out several 
errors. The lecture notes were re-written taking their comments into account during 
the second half 1999. We are also grateful to the referees of Springer for careful 
reading and numerous constructive suggestions on how to clearify bits and pieces as 
well as language improvement. Needless to say, the authors are responsible for any 
remaining errors. Tom Britton gratefully acknowledges support from the Swedish 
Natural Science Research Council. 

Hdkan Andersson, Stockholm 
Tom Britton, Uppsala 

February, 2000 
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Part I 

STOCHASTIC MODELLING 
In the first part of these lecture notes, we present stochastic models for the spread 
of an infectious disease in some given population. We stress that the models aim at 
describing the spread of viral or bacterial infections with a person-to-person trans-
mission mechanism. Diseases that belong to this category are, for example, childhood 
diseases (measles, chickenpox, mumps, rubella, ... ), STD's (sexually transmitted dis-
eases) and less severe diseases such as influenza and the common cold. Diseases 
excluded from these models are, for example, host-vector and parasitic infections al-
though they have some features in common. Modifications of epidemic models can 
also be used in applications in the social sciences, modelling for example the spread of 
knowledge or rumours (see e.g. Daley and Kendall, 1965, and Maki and Thompson, 
1973). In this context being susceptible corresponds to being an ignorant (not having 
some specific information) and infectious corresponds to being a spreader (spread-
ing the information to other individuals). One possible rumour model is where the 
spreader continues to spread the rum our forever which corresponds to the SI model 
(e.g. Exercise 2.3). 

Two main features make the modelling of infectious diseases different from other 
types of disease. The first and perhaps most important reason is that strong depen-
dencies are naturally present: whether or not an individual becomes infected depends 
strongly on the status of other individuals in its vicinity. In Section 1.2 we shall 
see how this complicates the stochastic analysis, even for a very small group of in-
dividuals. For non-transmittable diseases this is usually not the case. Occurences of 
such diseases are usually modelled using survival analysis, in which hazard functions, 
describing the age-dependent risk for an individual to fall ill, are specified; propor-
tional hazards (Cox, 1972) is an important example. These hazards may be specific 
to each individual and even contain a random parameter which may be correlated 
between related individuals; as in frailty models (e.g. Hougaard, 1995). Even then the 
disease-times for different individuals are defined to be independent given the hazard 
functions, contrary to the case for infectious diseases. A thorough analysis of such 
models and their statistical analysis, including many examples, is given in Andersen 
et al. (1993). 

The second feature, which affects the statistical analysis, is that most often the 
epidemic process is only partly observed. For example it is rarely known by whom an 
infected individual was infected, nor the time at which the individual was infected and 
during what period she was infectious (here and in the sequel we denote individuals 
by 'she'). Problems related to this property are treated in Part II of the lecture notes. 

In the introductory chapter we present the simplest stochastic model, discuss 



advantages and disadvantages of stochastic models as opposed to deterministic models 
and give a brief overview of the history of epidemic models and give some general 
references on epidemic modelling. In Chapter 2 we define what we call 'The standard 
SIR epidemic model' (SIR epidemic for short), which serves as the canonical model in 
the text. The abbreviation SIR is short for 'susceptible', 'infectious' and 'removed'. 
SIR models assume that individuals arc at first susceptible, if they get infected (hey 
remain infectious for some time, after which they recover and become immune. All 
individual is said to be removed if she has recovered and is immune or dies, and plays 
no further role in the epidemic. A construction of the SIR model is given in Chapter 
2, and exact results concerning the final size (i.e. the total number infected by the 
disease) and 'the total area under the trajectory of infectives' are derived. In Chapter 
3 the Coupling :vlethod is presented, a method which enables the SIR p.pidemic model 
to be approximated by a branching process during its initial stage, assuming a large 
population. First, the main idea of coupling is given, and then it is applied to the SIR 
epidemic model. In Chapter 4 the important threshold limit theorem, concerning the 
final size of the SIR epidemic in a large population, is stated and proved. In Chapter 
5 we are concerned with approximations of the entire epidemic process and not only 
its final size. This relies on diffusion theory for the special case when the epidemic 
model is Markovian. 

Chapters 6 and 7 extend the standard SIR epidemic to the case where the pop-
ulation is not completely homogeneous. Chapter 6 is devoted to so-called multitype 
models, where individuals are of different 'types' and these types differ, for example 
in terms of susceptibility. In Chapter 6 we also model the spread of disease when 
the community is built up of households, assuming different transmission rates be-
tween individuals depending on whether they belong to the same household or not. 
In Chapter 7 we characterise an epidemic model in terms of random graphs. This 
technique is introduced to model heterogeneities caused by e.g. social structures or 
geographic location. The last chapter of Part I, Chapter 8, concerns models for en-
demic diseases, i.e. diseases which are present in the population over a long period 
of time. The models of this chapter are different in that new susceptible individuals 
have to entcr the population for endemicity to occur. This can be achieved by as-
suming that old individuals die and new (susceptible) individuals are born into the 
population, i.e. a dynamic population, or that individuals become susceptible aftcr 
recovery rather than immune. The latter type of model is, for obvious reasons, called 
an SIS model. 



1 Introduction 

1.1 Stochastic versus deterministic models 

These lecture notes focus on stochastic models and their statistical analysis. De-
terministic epidemic models have perhaps received more attention in the literature 
(see also Section 1.4 about the history of epidemic models). For example, the mono-
graph by Anderson and May (1991), probably the most cited reference in the recent 
literature on epidemic models, treats almost exclusively deterministic models. 

The main advantage of deterministic models lies in their simpler (but not nec-
essarily simple!) analysis. For a stochastic epidemic model to be mathematically 
manageable it has to be quite simple, and thus not entirely realistic. Deterministic 
models can be more complex, yet still possible to analyse, at least when numerical 
solutions are adequate. 

Several reasons suggest that stochastic models are to be preferred when their 
analysis is possible. First, the most natural way to describe the spread of disease is 
stochastic; one defines the probability of disease transmission between two individuals, 
rather than stating certainly whether or not transmission will occur. Deterministic 
models describe the spread under the assumption of mass act.ion, relying on the law 
of large numbers. In fact, an important part in stochastic modelling lies in showing 
what deterministic model the stochastic model converges to, when the community 
size becomes large. Secondly, there are phenomena which are genuinely stochastic 
and do not satisfy a law of large numbers. For example, in a l.arge community, many 
models will lead either to a minor outbreak infecting only few individuals, or else to 
a major outbreak infecting a more or less deterministic proportion of the community 
(see Section 1.3 below). To calculate the probability of the two events is only possible 
in a stochastic setting. Further, when considering extinction of endemic diseases 
(see Chapter 8), this can only be analysed with stochastic models, since extinction 
occurs when the epidemic process deviates from the expected level. A third important 
advantage concerns estimation. Knowledge about uncertainty in estimates requires a 
stochastic model, and an estimate is not of much use without some knowledge of its 
uncertainty. 

To conclude, stochastic models are to be preferred when their analysis is possible; 
otherwise deterministic models should be used. Deterministic models can also serve 
as introductory models when studying new phenomena. We see no conflict between 
the two and believe that both types of models play an important role in better 
understanding the mechanisms of disease spread. In these lecture notes we focus 
on stochastic models, for deterministic models we refer the reader to Anderson and 
May (1991), and Bailey (1975) - who also treats stochastic models. 
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1.2 A simple epidemic model: The Reed-Frost model 

Before describing some general characteristics of the models to be studied, we present 
the simplest possible epidemic model for the spread of an infectious disease, say the 
common cold, in a small group of individuals. The model is called the Reed-Frost 
model named after its founders (see Section 1.4 on the history of Epidemic modelling) 
and is a so-called chain-binomial model (also treated in Section 10.2). The model is 
an SIR epidemic model which means that individuals are at first susceptible to the 
disease. If an individual becomes infected, she will first be infectious, and called an 
infective, for some time and then recover and become immune, a state called removed. 
An individual is said to be infected if she is either infectious or removed, i.e. no longer 
susceptible. 

The model is usually specified using discrete time dynamics. In the discrete time 
scenario it is natural to think of the infectious period as being short and preceded 
by a longer latent period. Then new infections will occur in generations, these gen-
erations being separated by the latent period as the discrete time unit. The event 
probabilities in a given generation depend only on the state of the epidemic in the 
previous generation (Le. a Markov model), and these events are specified by certain 
binomial probabilities. If we let XJ and õ ú = denote the number of susceptibles and 
infectives respectively at time (or generation) j, the chain-binomial Reed-Frost model 
has conditional probabilities 

mE ú H ä == Yi+dXo = xo, Yo = Yo,··· ,XJ = Xj, ú == YJ) 

= mE ú H N == YJ+IIXj = Xj, ú == Yj) 

= ( Xj ) (1 _ qY')y,+1 (qy,tJ-YJ+1, 
YJ+l 

and XJ+l = Xj - lj+l. This means that a given susceptible of generation j remains 
susceptible in the next generation if she escapes infection from all infectives of gen-
eration j; these events are independent each occurring with probability q. Further, 
different susceptibles in a given generation become infected independently of one an-
other and infectious individuals are removed in the next generation. Given the initial 
state Xo = n and Yo = m the probability of the complete chain Y!,· .. ,Yk. Yk+l = ° 
is obtained by conditioning sequentially and using the Markov property of the chain. 
If we let XJ+l = Xj - YJ+l we have 

P(Y1 = Yl,· .. , Yk = Yk, Yk+1 = 0IXo = n, Yo = m) 
= P(Y1 = ydXo = n, Yo = m) x ... X P(Yk+l = 0IXk = Xk, Yk = Yk) 

= (;) (1- qm)Yl (qmt-Y1 x ... x E ú F =(1 - qYk)O (qYktk. 

From a mathematical point of view, the spread of the disease does not have to 
occur in generations. The necessary assumption is that each individual who becomes 
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infected has 'infectious contact' with any other given individual (meaning that the 
individual becomes infected if she is still susceptible) with probability p = 1 - q, and 
all such contacts occur independently. Of course, the notion of generation becomes 
less meaningful, unless there is a long latency period prior to the infectious period. 
Still the formula can be used when computing the total number of infected individuals 
Z = 2:: j 2:] 0, as we shall see (note that the initially infectives m are excluded). The 
quantity Z is also known as the final size of the epidemic. 

To compute P(Z = zlXo = n, Yo = m) we simply sum the probabilities of all 
chains for which lyl = 2:: j 2:1 Yj = z. From the defining equations it is seen that yj = ° 
implies that 0+l = 0. This means that new infections may only occur whenever some 
individuals are infectious, which implies that the length of a chain cannot \)(' \ollgn 
than the total number infected, making the number of possible chains finite. The 
probability function for the final number infected is hence 

P(Z = zlXo = n, Yo = m) = L P(Y1 = Y1,··· , Yk = Yk, Yk-- 1 = DIXo = n, Yo = m). 
Y:IYI=z 

Below we calculate the probability function explicitly for Z, the final number 
infected among those initially susceptible, when Yo = m = 1 and Xo = n = 1, 2, and 
3. Since m = 1 in all cases we omit it in the conditioning notation. We start with 
n = 1: 

P(Z = DIXo = 1) 
P(Z = 11Xo = 1) 

P(Y1 = 0IXo = 1) = q, 
P(Y1 = l'Y2 = DIXo = 1) =p. 

For n = 2 we have 

P(Z = DIXo = 2) 

P(Z = 11Xo = 2) 

P(Z = 21Xo = 2) 

P(Y1 = 0IXo = 2) = l, 
P(Y1 = 1, Y2 = 0IXo = 2) = G)pq x q, 

pry] = 2, Y2 = DIXo = 2) + P(Y1 = 1,1"2 = 1, Y3 = 0IXo = 2) 

p2+G) pq X P' 

For n = 3 we compute only the first three probabilities, the final probability may be 
derived from the complement. 

P(Z = 0IXo = 3) 

P(Z = 11Xo = 3) 

P(Z = 21Xo = 3) 

pry] = 0IXo = 3) = q3, 

P(Y1 = 1, Y2 = 0IXo = 3) = G) pq2 )< q2, 

P(Y1 = 2, Y2 = 0IXo = 3) + P(Y1 = 1, Y2 = 1, Y3 = 0IXo = 3) 

G)p2q X q2 + G)pq2 X G)pq x q. 
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Needless to say, these probabilities become very complicated to compute even for 
moderate sized groups (n larger than 10 say). The Reed-Frost model is a special case 
of the standard SIR epidemic model presented in Chapter 2, in which the length of the 
infectious period is deterministic (implying that contacts between pairs of individuals 
occur independently). As for the model of Chapter 2, we implicitly assume that the 
population is homogeneous and that individuals mix homogeneously. In Section 2.4 
we derive the final size probabilities in a more coherent way for the more general 
model. 

1.3 Stochastic epidemics in large communities 

The previous section illustrates the need for approximation methods when consid-
ering large commnnities. In fact, the recursive formulas for the final size presented 
in Section 2.4 are numerically unstable and cannot be applied to obtain numerical 
solutions when the number of susceptibles n exceeds 50-100. 

The main insight from such large population approximations is the threshold limit 
theorem (Chapter 4). Loosely speaking, this theorem states that, as n -+ 00 one 
of two possible scenarios can occur: either a) only few individuals will ever become 
infected, or else b) a more or less deterministic positive proportion of the susceptibles, 
with some Gaussian noise of smaller order, will have been infected by the end of the 
epidemic. The latter scenario is referred to as a large or major outbreak. Much 
work has been carried out to state versions of this theorem for more and more general 
models, and in particular to derive the probabilities of each of the two scenarios as well 
as finding the deterministic proportion infected in case of a large outbreak. Another 
important task is to find out for which parameter values the asymptotic probability 
of a major outbreak is o. The parameter Ro, called the basic reproduction number, 
plays a crucial role in this context. The parameter Ro, a function of the model, is 
the average number of new infections caused by a 'typical' infective during the early 
stages of the epidemic. The threshold limit theorem states that a major outbreak in 
a large population is possible if and only if Ro > 1. From a statistical perspective 
only major outbreaks are considered since minor outbreaks would rarely be observed 
at all. Questions of interest are then to derive parameter estimates, including their 
uncertainty, having observed the number of infected. The main motivation for such 
estimation lies in the control of disease spread. If for example a vaccine is available, 
a question of practical relevance is to estimate what proportion of the susceptible 
population it is necessary to vaccinate, in order to avoid future outbreaks, a state 
known as 'herd immunity'. This type of qnestion is considered in Chapter 12. 

Sometimes not only the final state of the epidemic is of interest, but rather the 
entire epidemic process. It is then possible to approximate the epidemic process 
using diffusion theory (see Chapter 5). This is, for example, the case in the statistical 
setting where data is collected continuously from an ongoing epidemic, a topic treated 
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in Chapter 9. 

1.4 History of epidemic modelling 

This section will give only a short selected presentation of some early mathematical 
models for the spread of infectious diseases. We have no intention of covering all 
important events in the development of this subject. For a more detailed historical 
overview we refer the reader to the books by Bailey (1975) and Anderson and May 
(1991). 

One of the earliest studies of the non-linearity of an epidemic model was contained 
in a paper by Hamer (1906). Hamer postulated that the probability of a new infection 
in the next discrete time-step was proportional to the product of the number of 
susceptibles and the number of infectives. Ross (1908) translated this 'mass action 
principle' to the continuous time setting. The first complete mathematical model 
for the spread of an infectious disease which received attention in the literature was 
a deterministic model of Kermack and McKendrick (1927). This model, known as 
the deterministic general epidemic, is now presented (note that the parametrization is 
different from the models treated later in the text). Let x(t), y(t) and z(t) respectively 
denote the number of susceptibles, infectives and removed (=recovered and immune, 
or dead) individuals. The population is considered to be of fixed size n (i.e. x(t) + 
y(t) + z(t) = n for all t). The model is then defined by the following set of differential 
equations 

x'(t) 
y' (t) 
Z'(t) 

-AX(t)y(t) 
AX(t)y(t) - 'Yy(t) 
'Yy(t) , (1.1) 

with initial state (x(O), y(O), z(O)) = (xo, Yo, 0). In Figure 1.1 we show how (x, y, z) 
varies over time for A = 1.9 and "1 = 1 where the bottom region corresponds to x(t), 
the middle region to y(t) and the top region to z(t) (which is empty at t = 0 since 
z(O) = 0). Note that their sum remains constant over time since x(t) +y(t) +z(t) = n. 

The factor AX(t)y(t) in (1.1) is the crucial non-linear term, indicating that infections 
occur at high rate only when there are many susceptibles and infectives. From the 
first two equations it follows that dxldz = -()x, where () = )\/'Y. So x(t) = xoe-8z (t) 

and hence y(t) = n - z(t) - x(t) = n - z(t) - xoe-8z (t). Kermack and McKendrick 
(1927) showed that y is decreasing unless Yo(AXo - "1) > 0 or equivalently Xo > lie. 
In this latter case there will be a growing epidemic. This observation is known as 
the threshold result, i.e. that completely different behaviour will occur depending 
on whether Xo exceeds 1/0 or not. Another important observation was that z(t) -+ 
Zoo < n as t -+ 00, where Zoo is the solution of z = n - xoe-8z . This leads to the very 
important property that not everyone becomes infected! 

The first stochastic model was proposed by McKendrick (1926). This model, a 
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Figure 1.1: Plot of (x(t), y(t), z(t)) defined by (1.1) with.\ = 1.9, I = 1, xo = 100 and 
Yo = 1. For each t, x(t) corresponds to the lower segment, y(t) to the mid-segment 
and z(t) to the top-segment. (N.B. x(t) + y(t) + z(t) = 101 for all t.) 

stochastic continuous-time version of the deterministic model of Kermack and Mc-
Kendrick (1927), did not receive much attention. A model which attracted more 
attention at the time, even though it was never published, was the chain-binomial 
model of Reed and Frost (presented in Section 1.2) put forward in a series of lectures 
in 1928. 

It was not until the late 1940's, when Bartlett (1949) studied the stochastic version 
of the Kermack-McKendrick model, that stochastic continuous-time epidemic models 
began to be analysed more extensively. Since then, the effort put into modelling 
infectious diseases has more or less exploded. In the rest of the lecture notes a 
selection of these methods will be presented. 

The list of references covering epidemic models and their analysis can of course 
be made long. Here we only mention a few central texts. The first pioneering mono-
graph was written by Bailey in 1957 but has since then been reprinted in a second 
edition (Bailey, 1975). This book covers both stochastic and deterministic models as 
well as statistical inference with numerous applications to real data. Becker (1989) is 
mainly concerned with statistical analysis of infectious diseases. Gabriel et al. (1990) 
is a collection of papers, on stochastic modelling and some statistical inference, that 
were written for a workshop on stochastic epidemic modelling in Luminy, France. 
The book by Anderson and May (1991) mentioned previously is probably the book 
which has received the most attention, together with Bailey (1975). Anderson and 
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May (1991) model the spread of disease for several different situations and give many 
practical applications. The book is also concerned with estimation; however, both 
modelling and inference are deterministic. A thematic semester at Isaac Newton In-
stitute, Cambridge, resulted in three collections of papers (Mollison, 1995, Isham and 
Medley, 1996, and Grenfell and Dobson, 1996), covering topics in stochastic modelling 
and statistical analysis of epidemics (i.e. its propagation in a community), human 
infectious diseases (i.e. the infection process inside the body), and animal diseases, 
respectively. Very recently, two new monographs have been published. The first one 
is written by Daley and Gani (1999) who have a long experience in stochastic mod-
elling of the spread of disease. This book focuses on stochastic modelling but contains 
also statistical inference and deterministic modelling, as well as several historical re-
marks. Diekmann and Heesterbeek (200?), finally, are concerned with mathematical 
epidemiology of infectious diseases and also apply their methods to real data. 

Exercises 

1.1. Compute P(Z = 0IXo = 10, Yo = 1), P(Z = llXo = 10, Yo = 1), P(Z = 21Xo = 
10, Yo = 1) and P(Z = 31Xo = 10, Yo = 1) for the Reed-Frost model. (Hint: Compute 
the probability for each epidemic chain giving Z = k separately and then add these 
probabilities. ) 

1.2. Show that y(t) -+ ° as t -+ 00 for the model of Kermack and McKendrick given 
by the differential equations (1.1). 

1.3. Consider again the Kermack-McKendrick model and assume Xo > I/O. Using 
the formula y(t) = n - z(t) - xoe-8z (t) , show that the maximum number of infectives 
occurs exactly at the time t when x(t) = I/O. 



2 The standard SIR epidemic model 

In this chapter we present a simple model for the spread of an infectious disease. 
Several simplifying assumptions are made. In particular, the population is assumed to 
be closed, homogeneous and homogeneously mixing. Also, the effeds of latent periods, 
change in behaviour, time varying infectivity and temporary or partial immunity are 
not taken into account. In later chapters we shall indicate ways of handling some of 
these complicating features of a real-life epidemic. 

2.1 Definition of the model 

We assume that initially there are m infectious individuals I ú í Ü ~ í = have just become 
infected) and n susceptible individuals. The infectious periods of different infectives 
arc independent and identically distributed according to some random variable I, 
having an arbitrary but specified distribution. During her infectious period an infec-
tive makes contacts with a given individual at the time points of a time homogeneous 
Poisson process with intensity A/n. If a contacted individual is still susceptible, then 
she becomes infectious and is immediately able to infect other individuals. An in-
dividual is considered 'removed' once her infectious period has terminated, and is 
then immune to new infections, playing no further part in the epidemic spread. The 
epidemic ceases as soon as there arc no more infectious individuals present in the 
population. All Poisson processes are assumed to be independent of each other; they 
are also independent of the infectious periods. 

We call this model the standard SIR epidemic model, the letters S, I, R standing 
for the terms 'susceptible', 'infectious' and 'removed', respectively. Following Ball 
(1995), we denote the process by En,m(>.., 1). Also denote the mean and the variance 
of the infectious period I by Land (52, respectively. The rate of contacting a given 
individual is set to A/n in order to keep the rate at which a given infective makes 
contact with other (initially susceptible) individuals constant (= A), independently of 
the population size. The special case where the infectious period has an exponential 
distribution will be discussed in some detail further on. 

The basic reproduction number and the final epidemic size, already encountered 
in the Introduction, are two extremely important epidemiological quantities. The 
final size of the epidemic, Z, is simply defined as the number of initially susceptible 
individuals that ultimately become infected. Thus Z is a finite random variable taking 
values between 0 and n. In Section 2.4 we shall derive a linear system of equations 
for the distribution of the final epidemic size. 

The basic reproduction number, Ro, is a little more difficult to describe. For 
this simple model Ro is conveniently defined as the expected number of infections 
generated by one infectious individual in a large susceptible population. For the 
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model presented above fro = ^ ú = since ú = is the average length of the infectious period 
and during the infectious period an infectious individual has contact with initially 
susceptible individuals at rate A. The branching approximation of Section 3.3 will 
in a rigorous way give the basic reproduction number the interpretation of a critical 
parameter indicating whether a large outbreak is possible or not. For epidemic models 
with different types of heterogeneities, it is not always obvious how Ro should be 
defined. We shall return to this problem in Chapters 6 and 7. 

2.2 The Sellke construction 

The following alternative elegant construction of the standard SIR epidemic model 
is based on Sellke (1983). We keep track of the total 'infection pressure' generated 
by the infectious individuals. Each susceptible individual is associated with a critical 
level of 'exposure to infection', and as soon as the infection pressure reaches this level, 
the susceptible becomes infected. We call this level the threshold of the individual. 
This purely mathematical construction does not reflect any properties of a real-life 
epidemic but it will serve as an important tool in the derivation of several results in 
later chapters. 

Label the initial infectives -(m - 1), -(m - 2), ... ,0 and the initial susceptibles 
1,2, ... , n. Let L(m-l), L(m-2), ... , In be independent and identically distributed 
random variables, each distributed according to I. Also, let Ql, Q2, ... ,Qn be an 
independent sequence of independent and identically distributed exponential random 
variables, having mean 1. These are the individual thresholds. For i = -(m -
1), -(m - 2), ... ,0, the initial infective labelled i remains infectious for a time Ii and 
is then removed. Denote by Y(t) the number of infectives at time t, and let 

Alt A(t) = - Y(u) du 
n 0 

(2.1) 

be the total infection pressure exerted on a given susceptible up to time t. Note 
that in A(t) the infectives are weighted according to their infectious periods. For 
i = 1,2, ... , n, the susceptible labelled i becomes infected when A(t) reaches Qi. 
The jth susceptible who becomes infected (not necessarily the susceptible labelled]l) 
remains infectious for a time I j and is then removed. The epidemic ceases when there 
are no more infectives present. 

In Figure 2.1 we have plotted the total infection pressure A(t) against t for an 
epidemic starting with one infectious individual (m = 1). On the y-axis we have 
indicated the smallest individual thresholds (Q(.) denotes the ith order statistic) and 
horizontally the corresponding infectious period translated in time to the instant when 
the individual becomes infected. Note that the slope of A(t) is proportional to the 
number of infectious periods covering the time point t (i.e. the number of infectives 
Y(t)!) as it should be according to the definition of A given in (2.1). 
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Figure 2.1: A typical realisation of the total infection pressure with m = 1 initially 
infectious individual. Note that the infection pressure never reaches Q(4) so the epi-
demic stops and the final size is Z = 3. 
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Let us check that this construction gives a process equivalent to the standard SIR 
epidemic. The infectious periods follow the correct distribution and, if Y(t) = y and 
the individual labelled i is still susceptible at time t, then she will become infected 
during (t, t + !::"t) with probability )..y!::"t/n + o(!::"t). Indeed, owing to the lack-of-
memory property of the individual threshold Q;, the probability of the complementary 
event is given by 

P(Q; > A(t + !::"t) I Q; > A(t)) P(Qi > A(t + !::"t) - A(t)) 
e-[A(t+L'>.t)-A(t)] 

exp ( J ú ó > WW? í =+ O(!::"t)) 

1 - )..y!::"t/n + o(!::"t), 

where the third equality follows from the definition of A(t), since no infections will 
occur in a small enough time increment, making Y(u) constant and equal to y in 
(t, t + !::"t). In the original formulation of the model, our susceptible individual is 
contacted according to the superposition of y independent Poisson processes, each of 
intensity )../n, giving rise to the same infection probability. 

2.3 The Markovian case 

Consider the standard SIR model En,m(A, 1) and denote by X(t) and Y(t) the number 
of susceptibles and the å ì ã Ä í ú = of infectives, respectively, at time t. The process 
(X, Y) = {(X(t), Y(t)); t 2: O} will be a Markov process if and only if the infectious 
period has the lack-of-memory property. Assume therefore that I is exponentially 
distributed with intensity,. Then the process (X, Y) is governed by the following 
transition table: 

from to 
(i,j) (i-l,j+l) 

(i,j - 1) 

at rate 
)..ij/n 
,) 

which follows immediately from the definition of the model. This model, which orig-
inated with Bartlett (1949), is known as the general stochastic epidemic, a name 
that now seems inappropriate, since the model has over the years been generalized 
in an innumerable number of ways. The assumption of an exponentially distributed 
infectious period is certainly not epidemiologically motivated, although with this as-
sumption the mathematical analysis becomes much simpler. .\Jotably, using Markov 
process theory we can obtain deterministic and diffusion approximations for the whole 
trajectory, which are valid for large population sizes (see Chapter 5). This is usually 
hard to achieve when the stochastic process is not Markovian. On the other hand, 
the modern probabilistic methods used in this text to derive branching process ap-
proximations (Section 3.3) together with results for the final epidemic size (Section 
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2.4 and Chapter 4) do not rely on the Markov property, but can be carried out for 
all instances of the standard SIR epidemic defined in Section 2.1. 

2.4 Exact results 

Consider again the standard SIR epidemic En,mC\' 1). We will derive a triangular 
linear system of equations for pn = (P!:, Pin, ... , P;:), where P;,' is the probability 
that k of the initial susceptibles are ultimately infected. 

Let Z be the final size of the epidemic, and let A = A (00) = ú = Iooo y (u) du be the 
total pressure of the epidemic. Recall the Sellke construction above. Both the final 
size and the total pressure can be expressed in terms of the infectious periods and 
the individual thresholds. First, 

Z = min {i : Q(i+l) > ú K = t I j }. 

J=-(m-l) 

where Q(l), Q(2}, ... , Q(n} are the order statistics of QI, Q2, . .. , Qn, since the epidemic 
stops as soon as the infection pressure generated by the previously infected individuals 
is insufficient to infect any more susceptibles. Also, 

z 
A = ú = L I j , 

n 
j=-(m-l} 

which is just another way of writing A(oo). 

It is thus clear that the final size and the total pressure are intimately related. In 
fact, we have the following Wald's identity for epidemics (Ball, 1986): 

Lemma 2.1 Consider the standard SIR epidemic En,m(>" 1) and let A be as above. 
Then 

E [e- OA N(A8/n)z+m] = 1, 82:0, 

where ¢(8) = E[exp( -81)] is the Laplace transform of I. 

Proof. To prove the identity, we note that 

(¢(A8/n)r+ m = E [exp (- ú = t Ij )] 

J=-(m-l} ) 

E [exp ( -8 ( A + ú =à ú I =I j ) ) ] 
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where the last identity follows since the variables I j , j :::: z + 1, are independent of 
both Z and A. • 

We are now in position to derive the system of equations for pn = (Pon, ... , P;:). 
For each k :::: 1, define K to be the set {I, 2, ... , k}; also, let 0 be the empty set. 
Recall that the initial susceptibles are labelled 1,2, ... , n. PI: is the probability that 
k initial susceptibles are infected in the En,m()" /) epidemic, and Pi( is the probability 
that precisely the set K is infected. By symmetry, PI: = G) Pi(. 

Now fix k and choose e such that () ú = k ú = P. ú = n, implying that K c::; L c::; N. 
We use the notion of infection pressure to compare an epidemic within N with a 
sub-epidemic within L. The event that an epidemic within N infects precisely the 
set K is the same as the event that a sub-epidemic within L infects precisely K, and 
that these knew infectives, together with the m initial infectives, fail to infect any 
of the individuals in the set N \ L. We know from the Sellke construction that the 
probability of avoiding the infection is given by exp( -a), given that the sub-epidemic 
has generated the infection pressure Al = a. It follows that 

Pi( = PkE[exp( -Al(n - e)) I Zl = kJ, 

where Zl is the final size of the sub-epidemic. This equation is equivalent to 

(l)pn 
kG) k = mú b x É ñ é E =-Al(n - e)) I Zl = k]. (2.2) 

Now let us use Wald's identity (Lemma 2.1) applied to the sub-epidemic and with 
e = n - f' to get 

E [e-A1(n-O /[rj>('\(n - fi)/nW'+m] = 1, 

or, conditioning on the final size Zl, 

Equations (2.2) and (2.3) immediately give us 

l WPk = 1 
ú =G) [rj>(.\(n - fi)/n)]k+m . 

Finally, noting that E ú F =/ E ú F = = E ú ú WF =/ G), we arrive at the following result: 

(2.3) 

Theorem 2.2 Consider the standard SIR epidemic En,m('\, /). Denote by PI: the 
probability that the final size of the epidemzc zs equal to k, 0 :S k :S n. Then 

t (; =:) P;:j [rj>('\ (n - fi)/n)]k+rn = G), 
k=O 

o :S fi :S n. (2.4) 
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Figure 2.2: The exact distribution of Z + m for m = 1, n = 50, ,\ = 1.5 and I == 1, 
i.e. the infectious period is constant and equal to 1. 

Note that, since the system of equations is triangular, the final-size-probabilities 
can be solved recursively. The proof of the theorem depends on the infection pressure 
generated by the various infectives, rather than the actual infectious periods. This 
indicates that we may allow for latent periods and time-dependent infection rates in 
the modelling, and still get the same type of final size results, as long as the required 
infection pressure can be calculated. That this is indeed the case will become even 
clearer in Section 7.1 where the concept of random graphs is used to describe the 
epidemic flow through a homogeneous and uniformly mixing population. In Figure 
2.2 the probabilities pon, pr, ... ,r;:, are plotted for a specific choice of community 
and parameter values (the figure actually shows the plot of P(Z + m = k) for dif-
ferent values of k but since m = 1 this corresponds to r!:_l :1. vVhen the infectious 
period is constant, I == c say, an infectious individual infects susceptible individu-
als independently (with probability p = 1 - e-)'C); the distribution of the final size is 
then equivalent to the Reed-Frost model defined for discrete ti::ne dynamics in Section 
1.2. It is seen in the figure that the distribution is bimodal: either a few individuals 
are infected or else a fairly large number are infected. This qualitative behavior be-
comes more and more evident as n, the initial number of susceptibles, increases. A 
mathematical proof ofthis is given by the threshold limit theorem of Chapter 4. 

Finally we mention briefly the very elegant theory developed by Lefevre and Picard 
in a series of papers (see e.g. Lefevre and Picard, 1990). They work with quite general 
classes of stochastic epidemic models, both single-type and multitype (cf. Chapter 6), 
and derive e.g. equations for the final size distribution and the total force of infection 
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A( 00), using a non-standard family of polynomials initially introduced by Gontcharoff 
(1937). However, we have decided not to include any presentation of their work, 
since the approach is rather algebraic in nature, and hardly increases the intuitive 
understanding of the models treated here. 

Exercises 

2.1. Compute Po, PIn and P:; numerically using the recursive formula given by (2.-1) 
assuming n = 10, m = 1, A = 2 and that the infectious period I is: 

a) exponentially distributed (the Markovian case) with mean 1 time unit. 

b) f(2,2)-distributed (i.e. with mean 1). 

c) constant and equal to 1. 

2.2. Assume m = 1, A = 1 and that the infectious period is constant with mean 1 
time unit. Use your favorite computer and mathematical software to see when the 
recursive formula of Section 2.4 breaks down numerically by computing and plotting 
PIn, ... , P;: for n = 10,20,30,... (for most computers negative probabilities start 
appearing around n ú =70 - 90). 

2.3. Modify the standard SIR epidemic so that the infectious period is = 00. (This 
model is denoted the SI model since individuals never get removed. It also has appli-
cations in sociology for the spread of rumours/knowledge. Infectious then corresponds 
to knowing, and spreading, the rumour.) For this model X(t) + Y(t) = n + m for 
all t. Assume m = 1. Describe the random process Y = {Y(t); t 2: O}, of infectious 
individuals. Calculate the expected waiting time until everyone in the population 
becomes infected. (Hint: Consider the consecutive waiting times between infections.) 
What happens with this expression when n gets large? 



3 Coupling methods 

Let us assume that we are interested in comparing two or more random elements 
with each other. It is sometimes possible to construct versions of these random 
elements on the same probability space, in such a way that the comparison suddenly 
becomes easy (indeed, often trivial) to carry out. This procedure is called coupling, 
the term referring to the fact that the random elements so constructed are often 
highly dependent. The coupling method has found many important applications in 
various fields of probability theory, including Markov processes, renewal processes and 
Poisson approximation. The book by Lindvall (1992) provides a nice introduction to 
the subject. 

Here we introduce some classical coupling ideas by prov:.ding simple examples. 
Then, after presenting the formal definition, we describe some applications of the 
coupling method to the standard SIR epidemic model En ,Tn (;1, I). First, it is shown 
that the number of infectious individuals in a large population initially behaves like 
a branching process. By coupling En,m(>\, 1) with a branching process, we justify the 
approximation of the epidemic by the simpler and thoroughly analysed branching 
process. This result indicates at the same time the significance of the basic reproduc-
tion number Ro. Second, by coupling two epidemics with different contact parameter 
A, we prove the intuitively obvious fact that the accumulated number of infected indi-
viduals at a given time grows (in a sense yet to be defined) with A, the infectiousness 
of the disease. 

3.1 First examples 

Gambler's ruin problem 

Consider first the standard gambler's ruin problem. An individual with an initial 
capital of m units of money goes to a casino. He plays a series of independent games, 
in each of which he wins one unit with probability 0 and loses one unit with probability 
1 - O. He continues until either his capital reaches n (n > Tri,) or he goes bankrupt, 
We wish to use coupling to prove that P(O), the probability of reaching the capital n 
given 0, is increasing in 0 (as would be expected). 

To this end, let U1 , U2 , , .. be independent and identically distributed random 
variables, each uniformly distributed on the interval (0,1), Then, for a given e, define 

i = 1,2, ... , and 

Yo(i) = {+1 
-1 

if U;::; e, 
otherwise, 

v 

Xo(v) = m + I>"o(i), 
i=l 
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II = 1,2, .... Then, since Yo (i) is +1 with probability 0, the process Xo = {XO(II); II = 
1,2, ... }, clearly describes the capital of the gambler. Note carefully that the same 
set of uniform variables is used to construct an entire family of trajectories, indexed 
by O. Now, if 0 < 0' then by construction Yo(i) :S Y8'(i) for all i, so XO(II) :S XO,(II) 
for all II. This means that if a trajectory XO(II) reaches n before 0 then the same is 
true for X O,(II). Thus we have that prO) :S P(O'), since this property does not depend 
on the particular sample space chosen. 

Stochastic ordering 

Let X and X' be real-valued random variables. We say that X is stochastically smaller 
'D 

than X' and write X :S X' if 

P(X ú =a) :S P(X' ú =a) 

for all a, i.e. the probability that X exceeds an arbitrary level is smaller than the 
probability that X' exceeds the same level. 

When working with stochastically ordered random variables, the following simple 
'D 

result can often be very helpful: if X and X' are random variables such that X :S X', 
then there exists a coupling (X, X') of X and X' such that X :::: X'. The proof goes 
as follows. For a given distribution function G, define the generalized inverse G* of 
C by 

C*(u) = inf{x : C(x) ú =u}, O<u<l. 

Then C*(U) has distribution function C if U is uniformly distributed on (0,1). If 
P and pi are the distribution functions of X and X', respectively, we have P ú = pi 
by assumption. Thus P" :S Pi", and we see that the variables X = P* (U) and 
X' = PI"(U) provide us with the desired coupling. 

Domination of birth and death processes 

In our next example, different birth and death processes are compared. Suppose that 
X = {X(t); t 2: O}, and X' = {X'(t); t ú = O}, are two birth and death processes on 
the set of nonnegative integers. The process X has birth rates A, and death rates It" 

P(X(t + dt) - X(t) = +11 X(t) = i) 
P(X(t + dt) - X(t) = -11 X(t) = i) 

A,dt + o(dt), 

Il,dt + o(dt), 

X(O) = m, and likewise X' has birth rates A:, death rates Il: and initial value mi. We 
use coupling to show that if Ai :S A: for all i 2: 0 and Ili ú =Il: for all i 2: 1 then X (t) 
is stochastically smaller than X'(t) for all t (provided also m :S m/). 

Define a bivariate process (X, X') with initial value (m, m') and with the following 
intensity table: 
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from 
(i, j) 

(i, i) 

to 
(i+l,j) 
(i,j + 1) 

at rate 
Ai 
A'· J 

(i-l,j) J-li 
(i,j - 1) J-lj 
(i+l,i+l) .A,; 
(i,i+l) A;-A; 
(i-l,i-l) J-l: 
(i -1,i) J-li - 1-( 
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This process is well-defined since all the numbers describing the transition rates are 
nonnegative by assumption. It is easily checked that the first coordinate X follows 
the same law as X. Likewise, the second coordinate is distributed as X'. Moreover, 
if the bivariate process starts above the diagonal i = j then it will stay above the 
diagonal at all times. Hence we have found versions X and X' with X(t) ú =X'(t) for 

v 
all t; in particular X(t) ú =X'(t) for all t, since this latter property has nothing to do 
with the sample space chosen. 

Convergence of Markov chains 

As a final illustration of the coupling method we show the classical result that an 
irreducible aperiodic Markov chain with a finite m-state space approaches stationarity 
as time grows, regardless of the initial distribution. Let X = (X(O), X(I), ... ) be 
such a Markov chain and denote its transition probability mat.rix by P and its initial 
distribution by A. Also, let'Tr = ('Tr!, ... , 'Trm) be the unique strictly positive stationary 
distribution, satisfying 'Tr = 'Tr P. We wish to prove that P(X(v) = j) -+ 'Trj as v -+ 00, 

for all fixed states j, j = 1, ... ,m. 

We now give the classical coupling proof. Introduce a Markov chain X' = (X'(O), 
X'(I), ... ), independent of X, governed by the transition matrix P, and with ini-
tial distribution 'Tr. This makes X' stationary. Then fix a state j and define X = 
(X(O),X(I), ... ) by 

where 

XCv) = {XCV) if v < T, 
X'(v) if v 2 T, 

T = min{v 2 0 : XCv) = X'(v)}. 

Due to the (strong) Markov property, the processes X and X will be equally dis-
tributed. Thus 

IP(X(v) = j) - P(X'(v) = j)1 = IP(X(v) = j) - P(X'(v) = j)1 

= IP(X(v) = j, T > v) - P(X'(v) = j, T > v)1 ú =peT > v). 



22 3 COUPLING METHODS 

It is easy to see that P(T > 1/) -+ 0 as 1/ -+ 00, i.e. that T is finite a.s. Indeed, 
the bivariate process (X, X') is irreducible and aperiodic, and T is the first time this 
process visits the diagonal. 

3.2 Definition of coupling 

Skills in coupling are acquired only by working through many examples. The actual 
definition is not very illuminating, but we give it here anyway for the sake of com-
pleteness. Given probability spaces (0, F, P) and (O',:F', P'), denote the state space 
by E; E could be the set of nonnegative integers, the set of real numbers, the set of 
sequences of real numbers, the space of right-continuous real-valued functions defined 
on [0,00), and so on. 

By a coupling of the random elements X : 0 -+ E and X' : 0 ' -+ E we mean a 
probability space (0, ft, P) and a random element (X, X') : 0 -+ E2 such that 

X,gX and 

In our first example, the desired result was obtained by putting X = Xu and 
j(' = Xu', The second and third example also fit nicely into our definition, and so 
does the last one if we put X' = X'. 

3.3 Applications to epidemics 

Initial approximation 

Intuitively speaking, during the initial stages of an epidemic in a large population 
we would expect that, with high probability, contacted individuals are susceptible, so 
that the number of infectious individuals follows some kind of branching behaviour. 
This branching approximation idea has a long history, see e.g. Bartlett (1955) and 
Kendall (1956). Here, following Ball and Donnelly (1995), we use a coupling argument 
to investigate how the approximation improves as the population size tends to infinity. 

Let us first define the branching process, and derive heuristically some initial 
results concerning this process. At time t = 0 there exists a group of m ancestors 
(that have just been born). The life spans of different individuals are independent 
and identically distributed according to a random variable I. During her life span, 
a given ancestor gives birth at the time points of a Poisson process with intensity ..\. 
Her children have independent and identically distributed life spans and themselves 
give birth according to Poisson processes with intensity ..\, and so on. We assume 
that all Poisson processes are independent of each other; they are also independent 
of the life spans. Denote the resulting process by Em(..\, I). Jagers (1975) gives a 
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thorough treatment of a class of continuous time branching processes containing the 
above process as a special case. 

Let {Y(t); t 2: O}, be the number of individuals alive at time t, t 2: 0, and denote 
by D the number of offspring of a given individual. We wish to investigate the possible 
extinction/explosion ofY(t) as t grows. First, since there are on the average mE(D)V 
individuals in the vth generation, it is intuitively clear that the process will become 
extinct if and only E(D) ú =1. Turning to the more interesting case where E(D) > 1, 
we let q be the extinction probability of the branching process and first assume that 
m = 1. Then, by letting Do be the number of children of the ancestor, we have 

00 

q = L P(extinction I Do = k)P(Do = k). 
k=O 

But ultimate extinction will occur if and only if all of the (independent) branches 
generated by these children become extinct, hence q = L:::"=o qkp(Do = k), showing 
that q is the solution of the equation fJ = E( fJD). With a little more work one can show 
that q is the smallest solution to this equation. Finally, when there are m ancestors 
the extinction probability is given by qm with q as above. For detailed proofs of all 
these results, see Jagers (1975). 

We conclude our description of the process Em(A, I) by presenting the fundamental 
quantities encountered above in a somewhat more explicit form. Note that, given 
I = t, the number of children D is Poisson distributed with mean At. It follows that 
the probability generating function of D is 

and its expectation is 

E (E(fJD I 1)) 
E (exp{ -AI(l - fJ)}) 
¢(A(l - fJ)), 

E(D) = ̂ ú I =

where the probability generating function and the expectation of I are given by ¢ 
and ú I = respectively. Also note that the variance of D is strictly positive, even if the 
lifetime I is constant. 

Returning to the main topic of this section, we examine the branching approxima-
tion of our epidemic process. Consider a sequence of standard SIR epidemic processes 
En,m(A, 1), n 2: 1. Let {Yn(t); t 2: O}, be the process describing the number of infec-
tives in the nth epidemic. We wish to compare this process with {Y(t); t 2: O}, the 
process describing the number of individuals alive in the continuous time branching 
process Em(A, 1). 

First we construct the branching process Em(A, 1). Suppose that the probability 
space (O,:F, P) holds the individual life histories 1i-(m-l), 1i-(m-2), .. . , where each 
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Figure 3.1: Construction of Em (>" 1) for m = 1 using life histories. 

Hi is a list containing the life span of the ith individual together with the time points 
at which this individual gives birth. Let H-(m-I), H-(m-2), ... ,Ho be the life histories 
of the m ancestors and let H" i 2': 1, be the life history of the ith individual born. 

Next, we use an independent sequence Ui , i 2: 1, of independent and identically 
distributed random variables defined on (n, F, P), each uniformly distributed on 
(0,1), to construct all of the epidemic processes En,m().., 1), n 2: 1. Fix n and label 
the initial susceptibles 1,2, ... ,n. The initial ancestors in the branching process 
correspond to the initial infectives in the epidemic. A contact in the epidemic process 
occurs whenever a birth occurs in the branching process. The individual contacted 
at the ith contact has label Ci = [nUL] + l. If this individual is still susceptible, 
then she becomes infected in the epidemic, otherwise she and all of her descendants 
in the branching process are ignored in the epidemic process. In the latter case the 
individual is called a ghost, following Mollison (1977). Finally, the death of an non-
ghost individual in the branching process corresponds to removal in the epidemic. 
This construction leads to a process equivalent to En,m().., 1). 

In Figure 3.1 the construction of Em ().., 1) is illustrated with m = l. The life 
histories of the initially infectious individuals are inserted horizontally one at each 
v-level, starting at t = 0 (in the example only Ho since m = 1). As t grows, a new life 
history is inserted whenever there is a birth among the life histories present. In the 
construction of the epidemic En,m().., 1) the same procedure is used, except that the 
life history is not inserted if the label C i has appeared previously, i.e. the individual 
is a ghost. 

Obviously, the processes Y" and Y agree until the time Tn of the first ghost. The 
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number of births in the branching process during a fixed time interval [0, to] is finite 
a.s. It is easily checked that any finite number of labels Ci will be distinct with a 
probability tending to 1 as n -+ 00, showing that 

P(Tn > to) -+ 1 as n -+ 00. 

Ball and Donnelly (1995) have shown that the branching process breaks down roughly 
at time C log( n). Note that the problem of deciding the number of contacts made 
before a previously infected individual is picked again, i.e. the number of trials before 
one of the labels Ci is repeated, is a variant of the classical birthday problem. 

We collect our findings in the following theorem: 

Theorem 3.1 Consider a sequence of epidemic processes En,m(>", 1), n 2: 1. Also, 
denote by Yn(t) the number of infectives at time t, t 2: o. Then, for each fixed to, 
ó ú E í ç F = -+ Y(to) almost surely, where {Y(t); t 2: O}, is the process descTib·ing the 
number of individuals alive in the branching process Em P" I). 

If )...t ::; 1 then Y becomes extinct with probability 1. On the other hand, if )...t > 1 
then Y becomes extinct with probability qm, where q is the smallest root of the equation 
cP()... (1 - 8)) = 8, or explodes with probability 1 _ qm. 

This result shows that the basic reproduction number Ro = At determines, for a 
large population, whether or not a large outbreak of the epidemic may occur. 

Monotonicity 

We finally show how coupling can be used to compare epidemics with the same 
distribution for infectious periods but with different infection rates. We consider 
two standard SIR epidemic models En,m()...,1) and En,m()...',1) where A ::; X, and 
prove that the accumulated number of infected individuals at time t for the epidemic 
with infection rate A is stochastically smaller than the corresponding quantity for the 
epidemic with rate X. 

Let us return to the Sellke construction. Let L(m-i), L(m-2), . .. , In be the in-
fectious periods and let Qb Q2, ... ,Qn be the individual thresholds of the epidemic 
En,m()..., I). Thus the variables Qi, 1 ::; i ::; n, are exponentially distributed with 
intensity 1. To construct En,m(A', I), use the same realizations of infectious peri-
ods and individual thresholds. Only the infection pressure processes, A(t) and A'(t), 
respectively, are different for the two models. 

For 1 :s: j :s: n, define Tj to be the time of the jth infection in the epidemic with 
infection rate A; Tj = 00 if the final size is strictly less than .i. Similarly define T;, 
1 ::; .i ::; n, for the epidemic process with infection rate A'. The first infection in the 
epidemic with rate X will occur earlier than the first infection in the other epidemic, 
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i.e. T{ ::; T), since A(t) ::; A'(t) up to the time point T{. This will give rise to 
an even larger difference in magnitude between the two infection pressure processes. 
Consequently, it follows that q ú = ::; T2 , and so on. The desired result follows, since 

I {j : lj ::; t} I ::; I {j : T; ::; t} I 

for all t. 

Exercises 

3.1. Check that the process (.\-, .\-'), defined in the section on domination of birth 
and death processes, is indeed a coupling of the birth and death processes X and 
X', i.e. that the marginal distributions coincide with the distributions of X and Xl 
respectively. 

3.2. In Sect.ion 3.3 we saw t.hat the branching approximation broke down on the 
part of the sample space where the size of the total progeny in the branching process 
was infinite. Show that in this case the first ghost in the construction appears when 
approximately fo individuals have become infected. It is well-known in branching 
process theory that, given explosion, the total number born before t grows like eot , 

where Q (the so-called Malthusian parameter) satisfies a certain equation. \Vhat can 
hence be said about the time of the appearance of the first ghost? 

3.3. Consider the Markovian version (Section 2.3) of the standard SIR epidemic (m 
fixed, n large). Without referring to the branching approximation of Section 3.3, 
approximate the process of infectives õ ú E í F = during the initial stage of the epidemic 
with a suitable simple birth and death process. What is the probability of extinc-
tion/explosion of this approximating process? (Hint: Xn(t) ;:::; n during the initial 
stage of the epidemic.) 



4 The threshold limit theorem 

We will now explore in greater detail the large population limit of the final size 
distribution for the standard SIR epidemic model En,rn(>" I). We have seen (Section 
3.3) that, if the population of susceptibles is large and we introduce a small number 
of initial infectives, the number of infectious individuals behaves like a branching 
process in the beginning. If the basic reproduction number Ho = ).,& is less than or 
equal to 1, a small outbreak will occur. On the other hand, if Ro exceeds 1, then 
there is a positive probability that the approximating branching process explodes; this 
implies, of course, that the branching process approximation will break down aft(,r 
some time. Then it is reasonable to expect that the final epidemic size will satisfy a 
law of large numbers. This indicates that the asymptotic distribution of the final siz(, 
actually consists of two parts, one close to zero and the other concentrated around 
some deterministic value. In this chapter we sketch the derivation of these results, 
using the Sellke construction and the beautiful imbedding representation of Scalia-
Tomba (1985,1990). A fluctuation result for the final size, given a large outbreak, will 
also be given. In the final section we combine earlier results and indicate the proof of 
a theorem due to Barbour (1975) on the duration of the (Markovian) standard SIR 
epidemic. 

4.1 The imbedded process 

To explain the imbedding idea, we need to introduce two auxiliary proc('sses; the 
infection pressure process 

), [tJ-rn 

I(t) = - L I J , 
n 

OS t S n + m, 
J=-(m-l) 

and the threshold process 

n 

Q(t) = L l{Q}:otjl t:::> O. 
J=! 

Recall that the variables I j are the infectious periods, and the variables Qj are the 
individual thresholds. The index t should not be interpreted as ordinary time. 

We know from Section 2.4 that the final size Z can be written 
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Let us express this quantity in terms of the infectivity and the susceptibility processes. 
By definition, Z = i if and only if 

Q(l) < I(O +m), 

Q(2) <::: I(I + m), 

Q(I) < I(i - 1 + m), 

Q(,+I) > I(i + m). 

Put another way, the pressure I(O + m) is enough to infect at least one individual, 
the pressure I(I + m) is then enough to infect at least two individuals, and so on. 
Hence 

It follows immediately that 

Q(I(O + m)) > 0, 

Q(I(l + Tn)) > 1, 

Q(I(i-l+m)) > i-I, 
Q(I(i + m)) < 1. 

Z = min{t :::> 0 Q(I(t + m)) = t}. 

For future use, denote the composition Q(I(t)) by C(t). Figure 4.1 shows simulated 
realizations of C(t) for two different population sizes. The final size Z is the "time" 
when C(t) intersects t. 

4.2 Preliminary convergence results 

From now on we consider a sequence of epidemic processes En,m()', I), n :::> 1; the 
quantities defined above will now have a subscript n. It is straightforward to analyse 
the (independent I) processes In and Qn. Define In(t) = In (nt) and Qn(t) = Qn(t)/n. 
Then 

and 

in probability, uniformly on compact sets. Here we recall that c 
composition is a continuous operation, it follows that 

E(I)' Since 

in probability, uniformly on compact sets. vVe also have the following fluctuation 
results. The sequence of processes 
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Figure 4.1: Simulation of the imbedded process C(t) for n = 100 (left) and n = 1000 
(right). 

n 2:: 1, converges in distribution to a Wiener process with variance )..2(J2t. Also, the 
sequence 

n 2:: 1, converges weakly to a Gaussian process with mean 0 and variance e-t (1 - e-t ). 

(Readers not familiar with the theory of weak convergence of sequences of random 
processes may consult e.g. Billingsley, 1968. Convergence for a fixed arbitrary value 
of t follows from the usual law of large numbers and the central limit theorem, hence 
the stated results are certainly plausible.) Finally, in order to study the fluctuations 
Cn(t) of the composite process Cn(t) = Qn(In(t)) we write 

v'n (QnC1n(t)) - [1 - e->"t]) v'n ( Qn(.:In(t)) - [1 - e-In(t)]) 

+ v'n ( [1 - e-fn(t)] -- [1 - e-ALtl) . 

It is seen that this process converges weakly to a zero mean Gaussian process C(t) 
with variance 

All of the results above are derived rigorously by Scalia-Tomba (1985, 1990). 
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4.3 The case mn/n -+ f-l > 0 as n -+ 00 

Write the final size proportion as 

Zn 1 . { - = - mill t 2: 0 
n n 

Working with w ú = = Zn +mn, which includes the initial infectives in the final size, will 
lead to cleaner formulas. We know that Cn(t) converges in probability to 1 - e-Mt , 

and also that mn/n -+ J-l > 0 by assumption. It is thus easily seen that the sequence 
w ú == w ú L å =converges to T, the unique solution to the equation 

To give an intuitive explanation of this equation, rewrite it as 

( 4.1) 

A given individual avoids becoming infected by a given infective with probability 
E (e- U In). Hence the probability of escaping infection is given by 

i.e. the right hand side of (4.1). But the probability of escaping infection is of course 
equal to the proportion of initial susceptibles who remain uninfected, i.e. the left hand 
side of (4.1). 

In Figure 4.2 the two functions f(t) = 1 + J-l - t and g(t) = e->.tt are plotted for 
the case J-l = 0.1, A = 1.8 and i = 1. The intersection of the two curves defines the 
unique solution T ú =0.903. 

To obtain a central limit theorem for w ú K I = we proceed as follows. Since Z;t = 
` å E w ú F =+ mn/n and T = 1 - e->'tT + IL, we may write 

Vn (Cn E w ú F = - [1 - e->.tZ;,]) 

+ Vn ([1 - É J [ D I ò ú z | = [1 - e->"T]) + 0(1) 

Vn (Cn E w ú F = - [1- É J [ ? w ú z F =
+ AW->"T Vn E w ú =- T) + 0(1). 

Rearranging and taking limits yields that the sequence s å E w ú =- T) converges to a 
normally distributed random variable with mean 0 and variance 
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Figure 4.2: Graphical illustration ofT, the solution to (4.1), for p, = 0.1, A = 1.8 and 
L = 1. 

The expression above is well-defined if the condition 

ALe-ACT < 1 

is fulfilled. To see that this is indeed the case, consider the functions exp( -ALi) 
and 1 + p, - t in Figure 4.2. The derivative of the exponential function has to be 
strictly greater than -1 at the crossing point T, leading to the desired conclusion. 
The condition has actually a very natural interpretation. At the beginning, the basic 
reproduction number is given by Ro = AI., i.e. an infectious individual generates on 
the average AL new cases in a large susceptible population. However, after a large 
outbreak a fraction 1 - (T - p,) has escaped infection so that. a second introduction 
of the disease in the population would correspond to the effective basic reproduction 
number AL(l - (T - p,)) = ALexp(-ALT). This number is less than 1, otherwise the 
epidemic would not have ceased in the first place. 

Let us state our results as a theorem. 

Theorem 4.1 Consider a sequence of epidemic processes Er .. ,mJA,I). Assume that 
mn/n --t p, > 0 as n --t 00 and define T as the solution to (4.1). Also denote the 
final epidemic size by Zn and wrzte w ú == Zn + m n. Then the sequence K X å E w ú L å =- T) 
converges to a normally distributed random var'iable with mean 0 and variance 

p(l - p) + A21J2Tp2 

(1 - ALp)2 
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where p = 1 + fJ, - r = e-),'T. 

4.4 The case mn = m for all n 

Recall the branching process approximation result of Section 3.3, implying that the 
final size Zn of the epidemic En,m()'" 1) converges almost surely to the total progeny 
of a suitably Ç ä l ú É å = branching process Em(A, 1) as n --t 00. Thus we have that 

lim lim mE w ú =S; i) = qm, 
t-+oo n-+oo 

where q'" is the extinction probability of the approximating process. Choose a se-
quence in such that in/n --t 0 and in/ fo --t 00 as n --t 00. Also, define r as the 
nontrivial solution of the equation 

1 - e-)"T = r. 

We will show that 

lim lim P(in < w ú = < m - cfo) = 0, 
c-+oon-+oo 

lim lim mE w ú => nr + cfo) = O. 
c-+oo n--too 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

This means that if n is large and if the branching approximation breaks down, then 
the final size falls in the range [nr - cfo, nr + cv'nJ with high probability (for some 
large fixed c). Scalia-Tomba (1985, 1990) has proved that the central limit theorem 
above (with fJ, = 0) applies in the case of a large outbreak. 

We start by proving (4.3), following Ball and Clancy (1993) rather than Scalia-
Tomba (1985, 1990). Define PtlEm(A,1)J to be the probability that the branching 
process Em(A,1) has total progeny i (including the m ancestors). If w ú = S; in then 
each infective contacts susceptible individuals at a rate bounded below by An = 

A(n + m - in)/n. It follows that 

in 

mE w ú =S; tn) < L Pt [Em (An' 1)] 
t=O 
00 

s: L Pt [Em (An, 1)] , 
t=O 

and the right hand side is the extinction probability q: of the modified branching 
process Em(An, 1). Now An --t A as n --t 00, so that qn --t q. Thus, for fixed t > 0 
there remains to choose t and n large enough that 

qm _ t S; mE w ú =S; t) S; mE w ú = S; tn) S; qm + t. 
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Equation (4.3) follows. Now assume that the basic reproduction number is above 1, 
i.e. Ro = ^ ú = > 1, otherwise there is nothing left to prove. We proceed to show (4.4). 
We have 

P(tn < w ú = < nT - cy'n) ::; P(Cn(t + m) = t for some t E [tn' nT - cv'nJ) 

= P ([1 - e-AL(t+m)/n] - ú == - )nCn c: m) for some t E [tn' nT - cy'nl) . 

Are there any values of t in the prescribed interval for which the equality above could 
be fulfilled? The left hand side is a concave function of t, so it is enough to check the 
endpoints. First put t = nT - cVii. After an easy calculation, we have 

[1 - e-AL(Hm)/n] - !..- = ú =(ALe- ALT + 1) + O(I/n), 
n Vii 

and the process ICn(t)I/Vii will not be able to reach this level if c is large enough. 
Second, set t = tn. It follows that 

[1 - e-AL(Hm)/n] - !..- = (AI. - f F ú =+ O(I/n). 
n n 

Again, this quantity is large on the 1/ Vii scale, since tn / y'n --t 00 as n --+ 00. (Note 
that AI. > 1 by assumption.) This proves (4.4), and (4.5) is verified in the same 
manner. 

We have thus indicated the proof of the following very important result. 

Theorem 4.2 Consider a sequence of epidemic processes En .mn (A, I). Assume that 
mn = m for all n, and define T as the nontrivial solution to (4.2). Also denote the 
final epidemic size by Zn and write w ú == Zn + m. 

If AL ::; 1 then Zn --+ Z almost surely, where P (Z < (Xl) = 1 and Z is the total 
progeny in a continuous time branching process Em (A, I), indiated by m ancestors, 
in which individuals give birth at the rate A during a lifetime distributed according to 
I. 

If AI. > 1 then Zn still converges to Z, but now P(Z < 00) = qm, where qm is the 
extinction probability of the branching process. With probability 1 - qm, the sequence 
ó D å E w ú L å =- T) converges to a normally distributed random variable with mean 0 and 
variance 

where p = 1 - T. 

p(I - p) + A2(J2Tp2 

(1 - Al.p)2 

From the theorem it follows in particular that, in the case where Ro > 1, the final 
size proportion Zn/n converges in distribution to a random variable with mass qm 



34 4 THE THRESHOLD LII'vIIT THEOREM 

at the point 0 and mass 1 - qm at the point T. In Figures 4.3 and 4.4 histograms 
of the final size in 10000 simulations are reported. Both figures treat the Markovian 
version of the standard epidemic model (cf. Section 2.3) and an initial population of 
n = 1000 susceptibles and Tn = 1 infectious individual. Figure 4.3 is the frequency 
distribution when Ro = 0.8 < 1 whereas Figure 4.4 corresponds to the case where 
Ro = l.5 > l. It is clear from the picture that major outbreaks occur only in the 
latter case. The solution of (4.2) is T "'" 0.583 when Ro = )../. = l.5 and the initial 
proport.ion infectious /1 is negligible. The variance expression of Theorem 4.2 is 3.139. 
The theorem then states that the distrihution of the major outbreak sizes should be 
approximately Gaussian with mean nT = .583 and standard deviation V3.139n "'" 56, 
agreeing quite well with the histogram. 

4.5 Duration of the Markovian SIR epidemic 

Let us finally discuss the duration Tn of the Markovian SIR. epidemic, i.e. the time 
between the first infection and the last removal in the epidemic. Barbour (1975) 
has derived limit theorems, as the population size becomes large, for the distribution 
of the duration. The epidemic is allowed to start either with a positive fraction of 
infectives or with a single case. Below we give a heuristic motivation of the fact 
that Tn is either 0(1) or grows like log(n) as n -t 00. We only discuss the (more 
complicated) case with one initially infectious individual. 

Consider a sequence of standard SIR epidemics Hn .mn (>.,1), where I is exponen-
tially distributed with rate {. Let Xn(t) and Yn(t) denote the number of susceptibles 
and infectives, respectively, at time t. Define the duration as 

Tn = inf {t 2: 0 : õ ú I =( t) = O}. 

VVe have seen (Exercise 3.3) that, if n is large, the number of infectives õ ú I = is well 
approximated at the beginning by a linear birth and death process Y = {Y(t), t 2: O} 
with birth rate )..y and death rate ,y. If)..h S; 1 then this approximating process 
will become extinct with probability 1, corresponding to a duration Tn that is 0(1). 
On the other hand, if )..h > 1 then Y will become extinct with probability ()..h)-1 
and will explode with probability 1 - ()..h )-1. In this latter case, the approximation 
actually breaks down after approximately C1 Iog(n) time units, as we have seen in Ex-
ercise 3.2, and we say that the first phase of the epidemic is over. In the second phase 
of the epidemic the bivariate process (Xn, Y,,) moves in a more or less deterministic 
fashion, and one can show that the duration of this deterministic phase is 0(1) (cf. 
Chapt.er 5). The third phase then begins when Xnl n has settled to 1 - T but there are 
still infectives present in the population. Here };, can be approximated by another 
birth and death process Y = {f'(t), t 2: O}, this time with birth rate )..(1 - T)Y and 
death rate ,y. We have seen in Section 4.3 that )..(1 - T)h = )..L(1 - T) < 1, so 
the approximating process Y is always subcritical, and will therefore become extinct 
after an additional time C2 10g(n). Cf. the construction of Whittle (1955). 
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Figure 4.3: Histogram of final sizes for 10000 simulations of Em,n(.X, I) with m = 1, 
n = 1000 and Ro = At = 0.8, i.e. below threshold. Each histogram bar has width 
10, so for example the second bar denotes the frequency of outbreak sizes between 10 
and 19. 
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Figure 4.4: Histogram of final sizes for 10000 simulations of Em,n(.>', I) with m = 1, 
n = 1000 and Ro = At = 1.5, i.e. above threshold. 
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These arguments together make it plausible that either Tn is short, or the ratio 
Tn/log(n) converges in distribution as n -+ 00. Actually a much stronger statement 
is true: Either Tn is short or the difference Tn - C log(n) converges in distribution as 
n -+ 00. We have the following theorem: 

Theorem 4.3 Consider a sequence of epidemic processes En,mn (A, 1), where I is 
exponential with mte f. Assume that tnn = 1 for all n, and define T as the nontrivial 
solution to (4.2). 

If Ali ú = 1 then the dumtion D g ú = of the epidemic converges weakly to the time to 
extinction of a birth and death process {Y(t); t 2': O} with birth mte Ay and death mte 
,y. 

If Ali > 1 then the above is true only on a part 0/ the sample space of probability 
mass (V,)-l. On the rest o/the sample space, 

Tn - ( t ) + _1_) log(n) - c -+ W, 
,-A1-T A-, 

in distribution as n -+ 00. Here c = C(A, ,) is a constant and W has the distribution 
o/WI/b - A(l- T)) + W2/(A - 'Y), where WI and W 2 are independent, both with the 
extreme value distribution function F( w) = exp( _e-W ). 

The proof is not difficult but rather technical, and is therefore omitted (see Bar-
bour, 1975). 

Exercises 

4.1. This exercise will give you a feeling of what proportion gets infected, assuming 
a major outbreak, for different parameter values. Using equation (4.1), compute the 
(asymptotic) proportion that gets infected numerically if: 

a) Ro = 2 (i.e. Ai = 2) and J.L = O.l. 

b) Ro = 0.8 and J.L = 0.1. 

c) Ro = 2 and J.L = 0 (the proportion infected is now the largest solution to (4.1) or 
equivalently (4.2)). 

d) Ro = 0.8 and J.L = O. (What does this say about the possibility of a major 
outbreak?) 

4.2. We know that the basic reproduction number Ro = AL for the standard SIR 
epidemic remains constant as n grows. What happens with the final size if instead 
Ro grows with the population size, Ro = Ro(n)? Study the following cases: 
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a) Ro(n) = en. 

b) Ro(n) = log(n). 

(Hint: Since most individuals will get infected when Ro is large, consider instead the 
number of individuals who escape the epidemic. Compute the probability that a given 
individual i escapes infection by looking at her threshold Q;.) 

4.3. Consider the standard SIR epidemic. Assume that m =: 1, n is large, and the 
basic reproduction number is above 1. Using the branching approximation, show 
that the probability of a large outbreak is always less than or equal to the final size 
proportion in case of a large outbreak. When does equality hold? (Hint: Derive 
expressions for the two quantities and apply Jensen's inequality to find a relation 
between them.) 



5 Density dependent jump Markov processes 

In the present section we shall approximate certain jump Markov processes as a 
parameter n, interpreted as the population size, becomes large. The results will be 
presented in a form general enough for our purposes. More general results, as well as 
other extensions, may be found in Chapter 11 of Ethier and Kurtz (1986), which has 
served as our main source. With the aim to explain the intuition behind the theory 
we start with a simple example, a birth and death process with constant birth rate 
('immigration') and constant individual death rate. The results in Sections 5.3 and 
5.4 are applied to this example, thus giving explicit solutions. In Section 5.5 we apply 
the results to the Markovian version of the epidemic model described in Section 2.3. 
It is shown that this process converges weakly to a certain Gaussian process but in 
this case it is not possible to obtain explicit solutions for the deterministic limit and 
the covariance function. It is worth mentioning that the techniques presented in this 
chapter may be applied to a wide range of problems such as more general epidemic 
models and models for chemical reactions and population genetics, as well as other 
population processes. 

Two fundamental results about Poisson processes will be used without proof. In 
Section 5.3 we usc the fact that if Y = {Y(t); t ú = O} is a Poisson process then 
limn-too sUPs<t In-1Y(ns) - sl = 0 almost surely, for any t ú =O. In Section 5.4 we ap-
ply the result stating that the process w(n), defined by w(n) (t) = fo(n- 1 Y (nt) - t), 
converges weakly to the standard Brownian motion. This is proven using the fact 
that Y(nt) = f Wú Z ä = (Y(kt) - Y((k - l)t)) is a sum of n independent and identically 
distributed Poisson random variables, and applying Donsker's theorem (e.g. Billings-
ley, 1968 p 68). See for example Ethier and Kurtz (1986), Exercise 4.10 for hints 
to a complete proof. In Section 5.4 we also integrate with respect to Gaussian pro-
cesses, the so called Ito integrals. However, it is possible to read the text without any 
knowledge of such integrals. 

5.1 An example: A simple birth and death process 

Let X = {X(t);t ú =O} be a birth and death process with constant birth rate: Ak = A, 
and with death rates: Pk = pk. This means that individuals enter the population 
at constant rate A (immigration) and each individual lives for an exponentially dis-
tributed time with mean II p. If at time t, the process satisfies X (t) > Alp, then 
the death rate (=pX(t)) exceeds the birth rate (=A), and vice versa if X(t) < Alp. 
One might therefore define All1 as the 'equilibrium' of the population, and one would 
expect the population size to fluctuate around this value, except possibly during the 
initial phase, if X(O) is far from the equilibrium. In Figure 5.1 below a simulation 
of the birth and death process with A = 200, P = 1 and X (0) = 100 is plotted. As 
we can see the process soon reaches the equilibrium value A/II = 200 around which 
it fluctuates randomly. The arguments above are very loose, and the present chapter 



40 5 DENSITY DEPENDENT JUMP MARKOV PROCESSES 

X(t) 

100 

50 

2 4 6 8 10 

Figure 5.1: Simulation of birth and death process with Ak = 200, /-tk = k and X(O) = 
100. 

will formalize the mathematical results. In particular, if A is large, implying that 
the population size at equilibrium is large, we will show that the process above (and 
others of similar type) can be approximated by certain diffusion processes. For the 
birth and death process defined above, it turns out that it can be approximated by a 
so-called Ornstein-Uhlenbeck process. Such a process makes excursions away from the 
equilibrium, but the farther away from equilibrium the stronger is the drift towards 
equilibrium; a result in line with the heuristics mentioned above. 

At the end of Sections 5.3 and 5.4 we apply the results of this section to the birth 
and death process and obtain explicit solutions. The birth and death process fits in 
with the model below if >., the parameter assumed to be large, is replaced by n. 

5.2 The general model 

Suppose that for each n ú = 1, Zn = {Zn(t);t ú = O} is a continuous-time Markov 
process on the d-dimensional lattice Zd governed by the jump intensities è ú å X e =
nj3e(n- 1 z), z, f E Zd. This means that . 

P(Zn(t + h) = z + f I Zn(t) = z) 

P(Zn(t + h) = z I Zn(t) = z) 
hnj3e(n-1z) + o(h), f i= 0, 

1 - hn L j31(n- 1 z) + o(h). (5.1) 

We assume that the process has only a finite number of possible transitions, i.e. 
that there are only finitely many f E Zd for which sUPx j3l(X) > 0, and that these 
transition rates j3l(X) are continuous functions. The starting point Zn(O) is assumed 
non-random. The rates above explain why the processes are called density dependent. 
The jump rates depend on the density of the process (i.e. normed by n). The factor 
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n implies that the rates increase with n, a necessary criterion for the processes to 
behave more and more closely like a diffusion. 

One way to characterize this process is by means of Poisson processes. To this 
end, let Yt = {Yt(t); t ú =O} be independent standard Poisson process defined for each 
of the possible transitions e. Then Zn can be written as 

(5.2) 

Note that even though the Poisson processes were defined independently, the terms 
in the sum above are dependent since the observation points of the Poisson processes 
are dependent. It is easy to check that (5.2) satisfies (5.1) by recalling that the 
probability of a jump in a Poisson process in a short time interval is proportional 
to the length of the interval. Given Zn(t) = z, the probability that there will be a 

jump in Yt (n f; !3t(n-1Zn(s))ds) during (t, t + h) is thus hn!3t(n-1z) + o(h), since 

the integrand is equal to n!3e(n- 1z) until the first jump after t. 

Note also that the processes are defined on the same probability space for different 
n, as the same Poisson processes are utilized in the construction. Below we prove 
convergence theorems for the sequence of processes {Zn}. 

5.3 The Law of Large Numbers 

Before proving convergence results for {Zn} we derive an inequality known as Gron-
wall's inequality, which is interesting in its own right. 

Lemma 5.1 (Gronwall's inequality). Assume f is a real function satisfying 0 S; 
f(t) S; a + b f; f(s)ds, for some positive constants a and b and for all t ú =o. Then 
f(t) S; aebt , t ú =o. 

Proof. By iterating the inequality above one obtains 
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The result follows. • 
Let fe be centered Poisson processes, that is, õ ú E í F = = Ye(t) - t. Further, let 

Z" = n-1Zn and define the drift function F by F(:r) = L££P£(:r),:r E Zd. With this 
notation, equation (5.2) is equivalent to 

The second term on the right hand side of (5.3) will be small for large n since 
sUPs<t n-1IYe(ns) I converges to 0 almost surely, as mentioned at the beginning of the 
present chapter. This suggests that Zn will resemble the deterministic vector function 
z(t) defined as the solution to the integral equation 

z(t) = Zo + l F(z(s))ds. (5.4) 

This deterministic approximation can also be explained intuitively. The process Zn 
starts at Z,,(O) and the 'average drift' of Z,,(s) at s is Le£(3£(Z,,(s))ds = F(Z,,(s))ds, 
implying that Zn(t) should be approximately equal to Z,,(O) + J; F(Zn(s))ds. The 
following theorem proves this strictly. 

Theorem 5.2 Suppose that limn-+cXl Zn (0) = Zo and that for- each compact K E nd 

ther-e is a constant A1K > 0 such that !F(:E) - F(y)1 S; MKI:r - yl, I:/:r, y E K. 

Then limn- hXJ sUPs<t IZ,,(s) - z(s)1 = 0 almost sur-ely, wher-e z(t) is the unique 
solution to (5.4). -

Pmoj. The validity of the theorem relies only on (3£ in some neighbourhood K of 
{z(s); 0 S; s S; t}. Define thus 13£ = SUPXEK (3£(x) , which is finite due to the continuity 
of (3c. From (5.3), the definition of z(t) and the assumptions of the theorem we have 

IZn(s) - z(8)1 = IZn(O) - Zo + n-1 ú ¡ ó Å =(n 18 (3e(Zn(u))du) 

+ is (F(Zn(u)) - F(z(u))) dul 

S; IZn(O) - zol + L 1£1 ë ì é å J ä ä õ ú E å N P É ì F N =+ [' AIKI Zn(u) - z(u)ldu. 
e uss J 0 

By Gronwall's inequality (Lemma 5.1) this implies that 
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Taking the supremum then yields 

sup IZn(s) - z(s)1 :S (IZn(O) - zol + L lei supn-II"fl,(n,6iU)I) eMKt . 
s9 i u9 

The exponential function is independent of n, the first term in the brackets converges 
to 0 by assumption, and each term in the finite sum converges almost surely to 0 
owing to the fact that sUPs<t n-IYt(ns) converges to 0 almost surely, for any t. This 
completes the proof. - • 

We now apply the theorem to the birth and death process defined in Section 
5.1. We replace the parameter A by n and denote the corresponding process by 
Xn- The two possible jumps are ±1, and the jump rates are n for an increase and 
p,a for a decrease if Xn(t) = a. With the notation of Section 5.2 this implies that 
,BI(X) = 1 and ,B-1 (x) = p,x. Consequently we have F(x) = ,Bl(X) - ,B-1 (x) = 
1 - p,x. It is easy to show that the solution to (5.4), denoted here by x(t), is given 
by x(t) = p,-l + (xo - p,-l )e-/l-t . By the theorem it then follows that if the initial 
value converges, i.e. Xn(O)/n --+ Xo, then Xn(t)/n converges to x(t) almost surely, 
uniformly on compact sets. In particular we see that for sufficiently large t x(t) ú =p,-l, 
so Xn(t) ú =np,-l, as was seen heuristically in Section 5.1. 

5.4 The Central Limit Theorem 

In the previous section, it was shown that the normed jump Markov vector process 
Zn, for a large population n, was approximately equal to t}}e deterministic vector 
function z defined by equation (5.4). The next natural step is to study the deviations 
between the two, that is to derive a central limit theorem. As usual, it turns out that 
the deviations are of order fo. Before defining the fo-scaled vector process Vn we 
define the similarly scaled Poisson processes defined in the previous section 

wt)(t) = fo (n-lYf(nt) - t) = n- 1/ 2Y(nt). 

As pointed out at the beginning of this chapter, wt) converges to the standard 
Brownian motion Wi. The fo-scaled centered vector process Vn is then defined by 

Vn(t) fo (Zn(t) - z(t)) (5.5) 

= vn(O) + ú É ï í F =([ ,Bt(Zn(S))dS) + 1t fo (F(Zn(s)) - F(z(s))) ds. 

Of course, vn(O) = fo (Zn(O) - z(O)) in (5.5), which by assumption is non-random. 
The second equality is a direct consequence of the definition of win), Zn and z. We 
can expand the integrand on the far right by Taylor's theorem, so that 

,;n (F(Zn(s)) - F(z(s))) ,;noF(z(s))(Zn(s) - z(s)) + O( ,;nIZn(s) - z(sW) 
= of(z(s)lVn(s) + O(IZn(s) - z(s)llVn(s), 
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where of = (OjFi) is the matrix function of partial derivatives. From Theorem 5.2 
we know that Zn converges to z, and from the beginning of this chapter that Wf(n) 

converges to Wf, a standard Brownian motion. This suggests that Vn converges to a 
process V defined by the integral equation 

V(t) = Vo + ú É t É =([ ,Be(Z(S))dS) + [OF(Z(S))V(S)dS. (5.6) 

This is proven in the following theorem where we use the notation G(x) = Ee efT ,Be(x). 

Theorem 5.3 Suppose of is continuous and that limn->oo vn(O) = Vo (constant). 
Then Vn =} V, the process defined in equation (5.6). This process V is a Gaussian 
vector process with covariance matrix 

i TI\! 

Cov(V(t), V(r)) = 0 <I>(t, s)G(z(s))(<I>(r, S))T ds, 

where <I> is a matrix function defined as the solution of 

<I>;(t, s) = -<I>(t, s)oF(z(s)), <I>(s, s) = I, 

E Y f [ ú = denotes the partial derivative with respect to s). 

Proof. Define En(t) by 

tn(t) [ Vn (F(Zn(s)) - F(z(s)) - of(z(s))Vn(s)) ds 

it O{IZn(s) - z(s)l)Vn{s)ds. 

From Theorem 5.2 we know that Zn{s) converges to z(s) uniformly on bounded inter-
vals. Thus, since Vn is bounded in probability it follows that sUPs<t lEn (s) I converges 
to 0 almost surely. -

Introduce Un(t) = Eeewt) (1; ,Be(Zn(s))ds) and U(t) = Ee eWe (1; ,Be(z(s))ds). 

These are the second terms in the defining equations of Vn and V, equations (5.5) 
and (5.6) respectively. Rewrite (5.5) and (5.6) to obtain 

Un(t) .- Un(t) + En(t) = -vn(O) + Vn(t) -[ of(z(s))Vn(s)ds. (5.7) 

U(t) -Vo + V(t) -[ 8F(z(s))V(s)ds. (5.8) 
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The processes {wt); n 2: I} converge to a standard Brownian motion for each e. 
Since Zn converges uniformly on bounded intervals to z and En converges to 0 it 
follows that Un => U. 

From the definition of <I> and by partial integration, 

so that 

[ <I>(t, s)dVn(s) -[ <I>(t, s)8P(z(s))Vn(s)ds 

<I>(t, t)Vn(t) - <I>(t, O)Vn(O) 

-[ (<I>;(t, s) + <I>(t, s)8F(z(s))) Vn(s)ds 

Vn(t) - <I>(t, O)Vn(O), 

An identical argument shows that V satisfies 

V(t) = <I>(t, O)Vo + [<I>(t, s) dU(s). 

(5.9) 

(5.10) 

From equations (5.9) and (5.10) it then follows that Vn =;, V by the continuous 
mapping theorem (e.g. Corollary 3.1.9 of Ethier and Kurtz, 1986). The vector process 
U is Gaussian, in fact a time-inhomogeneous Brownian motion vector. It follows that 
V is also Gaussian and the variance function is as specified in the theorem. • 

We now apply the result to the birth and death process defined in Section 5.1. 
In the previous section we concluded that Xn(t)/n converged to the deterministic 
function x(t) = J-t- 1 + (xo - J-t-1)e-l't. To simplify notation we assume that the 
process is started in equilibrium, that is Xn(O) = nJ-t-1 implying that Xo = J-t- 1 

and hence x(t) = J-t-1 for all t. Since F(x) = 1 - J-tx it follows that F'(x) = -J-t. 
The function <I> defined in the theorem then has the solution <I>(t,s) = e-I'(t-s), and 
G(x(s)) = 1 + J-tx(s) = 2. The theorem is applied to Vn(t) == y'n(n-1Xn(t) - J-t-l). 
The assumption Xn(O) = n/J-t implies that vn(O) = 0 for all n, so Vo = O. The 
theorem then states that the scaled birth and death process î ú =converges to (i.e. may 
be approximated by) a Gaussian process V with covariance function 

(Except at the start, i.e. for small t and r, the second term on t.he far right is negligible 
and then Cov(V(t), V(r)) >:::: J-t-1e-l' lt-r l .) A Gaussian process having this covariance 
function is known as an Ornstein-Uhlenbeck process, an important process in diffusion 
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theory (e.g. Karatzas and Shreve, 1991). It may also be illuminating to write equation 
(5.6) explicitly for our example: 

V(t) = W1 (t) - W_ 1(t) - J.1.[ V(s)ds. 

Since W1 (t) and W_1(t) are independent their difference has the same distributional 
properties as V2W(t) (where W is a standard Brownian motion, of course). Per-
forming this substitution and writing the integral equation above as a (stochastic) 
differential equation we have 

dV(t) = -J.1.V(t) dt + y!2dW(t), 

which is the defining differential equation for the Ornstein-Uhlenbeck process. The 
properties of the birth and death process derived heuristically can be verified. The 
limiting process has a drift back towards equilibrium (now at the origin due to cen-
tering). Beside the negative drift, there is random noise expressed in the second 
term. 

5.5 Applications to epidemic models 

In the present section we apply the results presented above to a special case of the 
epidemic model defined in Chapter 2. We stress that the approximation concerns the 
whole epidemic process (as it evolves in time) and not only the final size as mainly 
studied in preceding sections. Due to the complex structure of epidemic models 
(although simple to define), we will not obtain very explicit solutions, as we did for 
the birth and death process above. 

The theory involves approximations relying on the central limit theorem. This 
means that we can only hope to approximate the epidemic process when there are 
many infectious individuals, thus excluding the initial and final phases ofthe epidemic. 
We will therefore assume a (small) positive proportion ofinfectives when the epidemic 
starts; how to approximate the initial phase of the epidemic using coupling methods 
was described in Section 3.3. Further, we treat the special case of the standard 
epidemic model presented in Section 2.3 in which the infectious periods {I;} are 
exponentially distributed, making the epidemic process Markovian. By extending 
the dimension of the process, other distributions may be modelled using the same 
theory. For example, if the infectious period is r(k, 'Y) the epidemic model falls under 
the model of Section 5.2 in which there are k infectious states, which individuals pass 
through sequentially with identical jump rates 'Y. 

Using the notation of Chapter 2, the model treated in this section is denoted 
En,/Jn(A, I), where I is exponentially distributed with intensity 'Y. Our two-dimensional 
process is Zn = (Xn, Yn), where Xn(t) denotes the number of susceptibles at t and 
Yn(t) the number ofinfectives at the same time point. The initial values are Xn(O) = n 
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and Yn (0) = J-ln. The proportion J-l of initial infectives is assumed positive but usually 
very small. The process (Xn' Yn ) can make two types of jumps. Either a susceptible 
becomes infected, implying that the process changes by (-1,1), or else an infective 
is removed. The latter affects the process by (0, -1). Because the infectious peri-
ods are exponentially distributed with intensity parameter 'y, the jump rate for a 
(0, -I)-jump is iYn(t). New infections, or equivalently (-1, l)-jumps, occur at rate 
(AI n )Xn (t) Yn (t). 

The jump intensity functions for this model are thus 

i1(-l,l)(X, y) = ..\xy and 

Let x = xln, and similarly fj = yin. We have then argued that the epidemic process 
has the following jump intensities 

P((Xn(t+h), Yn(t+h)) = (x-I, y+I)!(Xn(t), Yn(t)) = (x, y)) ,= hni1(-I,I) (x, y)+o(h), 

P((Xn(t + h), Yn(t + h)) = (x, y - 1) !(Xn (t), Yn(t)) = (x, y)) =, hni1(O,-1) ('f, y) + o(h). 

The drift function F defined in Section 5.3 is then given by 

F(x, y) = (-AXY, AXY - iY). 

The deterministic solution z = (x, y) to the integral equation (5.4) corresponds to tit!' 
pair of differential equations 

x' (t) 
y' (t) 

-AX(t)y(t), 
AX(t)y(t) -iy(t), 

X(O) = 1, 

y(O) = u 

Recalling the historical overview in Section 1.4, we see that these differential equatiolls 
are identical to those of the first deterministic epidemic model presentpel Ä ú D = Kcnnack 
and McKendrick (1927). A parametric solution to this set of differential rquatiolls 
was derived in Section 1.4: 

X(t) e-Oz(t) 

y(t) 1 + J-l- z(t) - e-Oz(t), 

where z(t) is defined by the differential equation Zl(t) = á ú f =+ p. - z(t) - COo(t)), 

with initial value z(O) = 0. Here (} = Air. 

First we apply Theorem 5.2 to show that the 'density' process (X"' Ñ ú F =
= (Xnln, Ynln) , converges to the deterministic functions defincd above. To see that 
the conditions are fulfilled, we note that (Xn(O), Yn(O)) = (1, ú ä F = = (:1:0, Yo) so the re-
quirement that the initial value converges is obvious. Using the fact that the domain 
of interest satisfies 0 :::; Xl, X2, Yl, Y2 :::; 1 + J-l together with t.he element.ary bound 
ab :::; (a2 + b2 ) 12, one can show that 
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The upper bound is just a rough estimate but sufficient for the second assumption 
of the theorem to be satisfied. Theorem 5.2 thus proves that (Xn(t), Yn(t)) converges 
almost surely to (x(t), y(t)), uniformly on bounded intervals. 

Theorem 5.3 can be applied to conclude that the fluctuations around the de-
terministic solution are asymptotically Gaussian. However, the covariance function 
defined in the theorem is not very explicit. Let Vn = (Xn, Yn), where Xn(t) = 
Vn (Xn(t) - x(t)) and Yn(t) = Vn (Yn(t) - y(t)). The matrix of partial derivatives 
of the drift function and the matrix function G appearing in the theorem, are 

( -AY -AX) 
8F(x,y) = AY AX-, and G X = ( AXY - AXY ) 

( , y) - AXY AXY + ,y . 

The matrix 8F(x, y) is continuous and (Xn(O), Y,,(O)) = (0,0), so the assumptions 
of Theorem 5.3 are satisfied. Hence, it follows that ("Yn , Yn ) converges to a Gaus-
sian vector process l7. The set of difl·erential equations defining <I> in the covariance 
function are (derivatives below are with respect to s) 

and with <Pll(S,S) = <P22(S,S) = 1 and <pds,s) = <P21(S,S) = o. It is seen that this 
is actually two independent pairs of differential equations. The first pair contains 
<Pll and ¢12 and the second pair of differential equations contains <P21 and ¢22 and 
is identical to the first one except for different initial conditions. The solutions are 
not explicit but can be partially derived. They are used for the computation of the 
covariance functions of the process, as specified in the theorem. For example, it 
follows from the theorem that the limit of Xn(t) has variance 

[ {(<PIl(t, s) - ¢dt, S))2 AX(S)Y(s) + rP12(t, S)2,y(S)} ds. 

As mentioned earlier, it is complicated and not very illuminating to derive more ex-
plicit solutions. For interested readers we refer to Kurtz (19S1) who characterizes the 
limiting process for a general distribution of the infectious period, without assuming 
exponentially distributed infectious periods as we have done. 

Exercises 

5.1. Consider the 8I model (see Exercise 2.5) and assume that m = mn = nf.1, so that 
there is a positive proportion of initial infectives. Derive a law of large numbers for 
Yn(t), i.e. let n --* 00. (Hint: The rate of new infections is (Ajn)(n + m - Yn(t))Yn(t) 
since there are no removed individuals and hence Xn(t) = n + m - Yn(t).) 

5.2. The 8I model (continued). Let y(t) be the deterministic limit derived in Exercise 
5.1. To simplify computations you may assume that the initial proportion infecive I)' 
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is negligible (although positive). The central limit theorem of Section 5.4 implies that 
Vii (n- 1 Yn (t) - y(t)) converges to a Gaussian process. Derive the integral expression 
of Theorem 5.3 for the covariance function. Ultimately everyone gets infected (since 
individuals remain infectious forever) so the variance function tends to 0 as t = 'f' gets 
large, but at what rate? (Hint: You may use without proof the fact that <I>(t, s) splits 
into a product f(t)g(s).) 

5.3. An SIRS epidemic is just like the SIR epidemic, only individuals in the removed 
state lose their immunity after some time and become susceptible again. This inflow 
of new susceptibles can lead to a situation where the disease 'survives' for a long 
time, a behaviour known as endemicity (cf. Chapter 8) .. Extend the Markovian SIR 
epidemic to a Markovian SIRS epidemic by assuming that removed individuals become 
susceptible again independently at rate 1]. Assuming Xn(O) = nand Yn(O) = m where 
m = mn = np" derive the law a large numbers for this model. 



6 Multitype epidemics 

The epidemic model studied so far, En,m()., I), assumes that the population is homo-
geneous (with regard to the disease) and that individuals mix uniformly. In real life 
epidemics, this is rarely the case. For example, children are usually more susceptible 
to influenza, and sometimes individuals with a previous history of the disease have 
acquired some partial immunity. For STDs (sexually transmitted diseases), some indi-
viduals have higher infectivity in that they are more promiscuous (varying infectivity 
is often the case in other transmittable diseases as well). It may also be that the 
infectious periods of different individuals are not identically distributed; however, the 
assumption of independence seems reasonable in most cases. These heterogeneities 
can be characterised as individual. A second group of heterogeneities is caused by the 
social structure in the population. The model En,m()., I) assumes that an individ-
ual has contact with each individual at equal rate (= >-./n), so that there is uniform 
mixing. In real life, the presence of social structures, such as households, friendly 
(including work) relations, and geographical structures, violates this assumption. 

In the present chapter we relax these assumptions and examine the consequences 
to the spread of disease. In Section 6.1 we indicate how to generalise the Sellke con-
struction and the exact results presented in Chapter 2, to the case where the contact 
rates between different pairs of individuals as well as the distributions of the infectious 
periods may vary. In Section 6.2 we discuss large population approximations. When 
considering a sequence of epidemic models indexed by the increasing population size, 
this must be done without increasing the number of parameters. We therefore treat 
the case where individuals in the population can be characterised by different types of 
individuals, assuming that individuals of the same type are homogeneous with respect 
to susceptibility, infectivity and social mixing and have the same distribution of the 
infectious period. 

In Section 6.3 a model for epidemics among households is introduced. This model 
is motivated by the obvious fact that the rate of transmission tends to be much higher 
within households than between individuals of different households. We give some 
preliminary results, referring the interested reader to Ball et al. (1997) for the full 
story on household epidemics. Finally, in Section 6.4 we compare the distribution of 
the final size for a specific form of the multitype epidemic model with that of the final 
size for the 'single type' model En,m()., I). 

6.1 The standard SIR multitype epidemic model 

The model of Chapter 2 can be generalised in a straightforward way to the case where 
there are different types of individuals. Before defining the model, originally consid-
ered by Ball (1986), we need some notation. Assume the population splits up into k 
groups of individuals labelled 1, ... , k. Suppose that initially there are ni suscepti-
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ble 'i-individuals and m, infectious i-individuals, i = 1, ... ,k. Let n = (nl,'" ,nk), 
ill = (ml,'" ,mk), n = 2::, ni and m = 2::, mi, the latter two denoting the total 
number of initially susceptible and infectious individuals respectively. Finally, we let 
'ifi = n,/n denote the proportion of individuals of type i (i-individuals). 

Infectious periods of infectives of type i are distributed according to a random 
variable Ii with moment generating function cp" i = 1, ... ,k, and all infectious pe-
riods are defined to be independent. Define"i = E(Ii) and aT = Var(Ii) for future 
usc. During the infectious period of an i-individual she has contact with a given j-
individual at the time points of a homogeneous Poisson process with intensity A'j/n. 
If the contacted individual is still susceptible, she becomes infectious and is able to 
infect other individuals. After the infectious period the individual becomes recovered 
and immune and is called removed. All Poisson processes are defined to be indepen-
dent. The epidemic ceases as soon as there are no infectious individuals left in tlw 
population. 

:'\Iote that A,] may not necessarily coincide with Aj" Included in this 'contact 
parameter' is not only the rate at which two individuals meet (naturally symmetric) 
but also the probability of disease-transmission which depends on the infectivity of 
the infective and the susceptibility of the susceptible. Some special cases of the 
general contact parameters {A'j} have received attention in the literature. The case 
where the contact parameter splits up into a product Ai] = a,pJ goes under the name 
proport'ionate mixing. The parameters {a,} and {/:lj} are then called infectivities and 
susceptibilities respectively. The case where individuals vary only in terms of their 
susceptibility has also received special attention. In Section 6.4, we study this case 
more closely and see how the heterogeneity affects the final size of the epidemic. 
The model defined above covers t.he case where all individuals are different: simply 
let each individual be a type of her own. The parameters of the model are the 
contact parameters A = P,]} and the random variables I = (II,'" ,h) describing 
the infectious periods. Following the notation of Chapter 2 we denote the model 
defined above by En,m(A,I). 

The Sellke construction can be generalised to the model above in a simple fash-
ion. Label the i-individuals (i, -(mi - 1)), (i, -(mi - 2)), ... ,(i, nil with the infec-
tives listed first, i = 1, ... ,k. Let !;,-(m,-I), I,,-(m,-2),'" ,Ii,n, be identically dis-
trihuted random variables, each distributed according to I" i = 1, ... ,k. Also, let 
QI,1, ... ,Qi,n" Q2,1,"" Qk,"k be independent and identically distrihuted exponen-
tial random variables, having intensity l. These are the individual thresholds. All 
random variables listed above are defined to be mutually independent. The initial 
infecti ve labelled (i, r) remains infectious for a time I"r ane! is then removed. Denote 
by Y;(t) the number of infective z-individuals at time t, and let 

k A. ( 
Aj(t) = 2:= -.!l io Y;(u) du 

i=1 n a 
(6.1) 



6.2 Large population limits 53 

be the total infection pressure exerted on a given j-susceptible up to time t. The 
susceptible labelled (j, u) becomes infected when A)(t) reaches Qj,u and she remains 
infectious for a time Ij,u and is then removed. The epidemic ceases when there are 
no infectives left in the population. 

Exact results for the model En,m(A, I) are derived in a way similar to that of the 
homogeneous case described in Section 2.4. We shall not perform this generalisation 
but encourage the reader to do so. The formula for the final size can be expressed in 
a form similar to the final size formula for a homogeneous population. Introduce the 
vector notation 

and 

and let a ::; b mean a, ::; b" i = 1, ... ,k. The final ú á ò É = of the epidemic is now 
specified by a vector Z where the component Zi denotes the number of initially 
susceptible i-individuals who became infected. Let Pu = P(Z = u). Ball (1986) has 
shown that Pu can be derived from the recursive formula 

0::; v::; n, 

resembling the recursive formula for a homogeneous population in Section 2.4. 

6.2 Large popUlation limits 

In the present section we discuss large population limits of the model En,m (A, I). We 
consider the case where the population size n grows but k, the number of different 
types, is kept fixed. A further assumption is that the matrix {i,A'j7r)}, containing 
the expected number of contacts between all pairs of individuals, is irreducihle. (A 
k x k matrix A = (aij) is called irreducible if it is impossible to find a partition V), V 2 

of the index set {I, ... ,k} such that a,) = 0 whenever i E T\ and j E V 2 .) This 
assumption eliminates the possibility that part of the community encounters a major 
outbreak whereas another sub-group in the population remains unaffected. A proof 
of the central limit theorem for the model is very much in the same spirit as the proof 
for a homogeneous population in Chapter 4, but is more technical and is omitted 
here. A complete proof is given by Ball and Clancy (1993). Below we present and 
interpret the result. 

Let 7r(n) = n(n)/n I/(n) = m(n)/n(n) i = 1 k and assume that í Ü É ú É =quantities 
1. 1. '''''''1. t t' , ... , l 

converge as n tends to infinity. For the limits (written without superscripts) it is 
assumed that each 7r, is strictly positive whereas fJ,i may be 0 or positive. Introduce 
h . Z,(n) Zen) d Z-/(n) Z,(n)/. k TI Z-/(n). h t e notatIOn i = i + mi an i = i ni, ú = = 1, ... ,. lUS, i )s t e 
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proportion among the initially susceptible i-individuals who were infected during the 
course of the epidemic plus the ratio Pi between the number of initially infectious 
and initially susceptible i-individuals. As in the homogeneous case, we distinguish 
between two cases depending on whether the initial number of infectious individuals 
is of order n (i.e. E. {ti > 0) or finite. 

If L.;Pi > 0 then the vector {Z;(n)} converges in probability to 7, where 7 

(71, ... ,7k) is the unique solution to the equations 

j = 1, ... ,k. (6.2) 

The equation above has a natural interpretation. Let PJ = 1 + Pj - 7j be the left 
hand side above. Then Pj is the proportion of initially susceptible j-individuals who 
escape infection. The factor 'Tri7i in the exponent on the right hand side is the number 
of infected i-individuals (divided by n) and L.Aij is the expected infection force (mul-
tiplied by n) exerted on each j-individual. The sum in the exponent is thus the total 
infection force acting upon j-individuals, so the right hand side is the probability for 
a j-individual to escape infection. The balance equation above then simply states 
that the probability of escaping infection equals the proportion of individuals that 
escape infection. Ball and Clancy (1993) also prove a central limit theorem for the 
vector :l'en) with components Z:(n) = ,;n; (Z;(n) - 7 i )' It is shown that 

where Sand :=: are matrices defined by 

k 

:::'ij Pi(l - Pi)OiJ + J'Tri'TrJPiPj L'Trr7r Ari Arja;. 
r=1 

Above Oij is the Kronecker o-function and L; and al are the mean and variance of the 
infectious period for i-individuals. It is worth observing that the variance increases 
with the variances of the infectious period, and that it coincides with the variance for 
a homogeneous population if there is only one type (k = 1). 

For the second case where the number m of initially infectives is kept fixed as 
n -+ 00 Ball and Clancy (1993) prove a threshold limit theorem for the multitype 
model. The theorem states that z/(n) converges in distribution to the distribution of 
the total progeny of a multitype branching process having m ancestors, and with life 
distributions {Ii} and birth rates {A;j'Trj}. The basic reproduction number Ro for the 
epidemic model is the largest eigenvalue of the matrix of mean offspring {L;Aij'Trj}. If 
Ro :0:::: 1 it follows from standard branching process theory (e.g. Jagers, 1975) that the 
total progeny of the branching process (and hence also for the epidemic) is almost 
surely finite. If Ro > 1 there is a positive probability 1 - f1 q;'" that the branching 
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process explodes ({ qi} is the solution to a certain equation). On this part of the 
sample space the vector z(n) converges to a normal dist.ributlon with mean 0, and 
the same variance as for the previous case, except for replacing each IL, by 0 in the 
expression. 

6.3 Household model 

\\fhen modelling the spread of disease in a human population, it is very important to 
take into account the formation of small social groups such as households, schools and 
work places, the reason being that the spread of infection is US1] ally greatly facilitated 
among such groups, which have a high level of mixing. Regarding household Illodels, 
Ball et al. (1997) is the main reference. For important cont.ributions to the theory 
and practical applications, sec e.g. Becker and Dietz (1995), Becker and Hall (1996), 
Becker and Starczak (1997) and Islam et al. (1996). A relat.,ed model is treated in 
an early paper by Bartoszyriski (1972). \Nork on outbreaks within households, in the 
presence of community infection, but without considering the dynamics of the latter 
can be found in e.g. Longini and Koopman (1982), Addy et al. (1991) and Becker 
(1989). Sec also Andersson and Britton (1998). 

Definition of the model 

Initially there are n susceptible individuals and m infectious individuals. Let the 
susceptible population be subdivided into n/ h households each of size h. (The case of 
unequal household sizes can be treated similarly, but the notation becomes cumber-
some.) The infectious periods of different infectives are independent and identically 
distributed according to 11 random variable I. Throughout her infectious period a 
given infective contacts a given individual in the population (within or outside her 
household) at rate AC/n, and, additionally, a given individual in her own household 
at rate AL. If the contacted individual is still susceptible, she becomes infectious and 
is immediately able to infect other individuals. After the infectious period the incli-
viclual becomes removed. As usual, all the random variables and Poisson processes 
involved are assumed to be mutually independent. Note that, by definition, infec-
tives make both 'global' and 'local' cont.acts wiLh their household members. This is 
for mathematical convenience only and in a large population the global rate Acln 
can be neglected compared to the local rate AL. 

Basic reproduction number 

As usual we study a sequence of epidemic processes indexed by the population size 
n. The household size h is kept fixed while the number of ::lOuseholds grows with 
the population size, in contrast with the situation in Section 6 1 where the number of 
groups was kept fixed while the group sizes grew. By using branching approximations 
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in a heuristic way, it is possible to derive the basic reproduction number Ro. Assume 
that n is large and m = l. The initial infective contacts on average ACi individuals, 
and these individuals will belong to distinct households with high probability. More-
over, each of the individuals infected in this way generates a small sub-epidemic in 
her own household, comprising on average lvh = i X ú Z ä = jPI ] individuals. Here F l], 
and more generally F'j is defined as the probability that, given i initial infectives in 
the household, ultimately j household members become infected, 0 ::; i ::; j ::; h. 
All these new infectives now make global contacts, introducing the disease ill other 
households, and so on. The branching character of the number of infectious individ-
uals is thus demonstrated, implying that the basic reproduction number Ro is given 
by 

Ro = AhAci. 

Of course, if there are no household formations (h = 1) we arrive at the old expression 
Ro = ACL, whereas Ro = hAcL if the disease is highly infectious within households 
(AL = CXl). 

Final size equation 

Assume that n is large and that mn/n -+ J.l > 0 as n -+ 00. Let w ú = be the ultimate 
number of infected individuals (including the initial infectives), and suppose that this 
quantity satisfies a law of large numbers, w ú L å = -+ T in probability as n -+ CXl. We 
will derive by heuristic means the asymptotic equation for T. Define q] to be the 
asymptotic proportion of households with j individuals ultimately infected, so that 

1 h 

T = J.l+ h LjqJ· (6.3) 
J=O 

Each individual in a given household of size h will become infected from outside with 
asymptotic probability 1 - exp (-ACI.T), and these infections occur independently of 
each other, thus remembering the definition of P,j above it follows that 

(6.4) 

Equations (6.3) and (6.4) together yield an implicit equation for T. It is jlossible to 
derive rigorously the threshold limit theorem for the final size together with a normal 
approximation result in case of a large outbreak. The proof is very similar to the 
proof outlined in Chapter 1, but is notationally much more inconvenient, hence we 
refer to Ball et al. (1997) for the details. 

6.4 Comparing equal and varying susceptibility 

In the present section we study a specific form of the multitype epidemic model defined 
in Section 6.l. We assume all individuals have the same distribution of the infectious 
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period and that the contact parameters {Aij} satisfy A'i = AJ • The interpretation of 
this is that all infectives are equally infectious ú =individuals only vary in terms of their 
susceptibility. In particular we compare the final size for such an epidemic with that 
of the final size of the 'corresponding' homogeneous population. In reality, one may 
not know which model is the correct one, thus motivating such a comparison. As a 
by-product we use a coupling argument to show a surprising result about exponential 
variables. This result was proven independently by Proschan and Sethuraman (1976) 
and Ball (1985). The proof below is inspired by Barbour, Lindvall and Rogers (1991). 
First we prove a lemma and then the main theorem concerning exponential variables, 
then we see what drastic consequences this has to the comparison of final size between 
different populations. 

Lemma 6.1 Let ú N = rv EXp(Al), 6 rv EXp(A2) and 1'/1 and 1'/2 rv Exp().), where)' = 
(AI + A2) /2. Assume further that all these random variables are mutually independent. 

Then there exists a coupling E ú ú I = ú X I = N D L ú I = 1'/;) such that E ú ú I = ú X F Ö E ú f D =6), E N D L ú I =1'/;)g(1'/I, 1'/2) 
and for which the order statistics satisfy 

almost surely. 

1) 

In particular it follows that 1'/(i) :S ú E I F I = i = 1,2. 

Proof. First we mention the standard way of constructing a continuous random 
variable X with distribution function F from a uniform random variable U. This 
is simply done by evaluating the inverse of the distribution function at the point 
U: X = F-l(U). It is easy to show that the random variable so obtained has 
distribution function F. This type of construction will be used repeatedly, without 
explicitly performing the transformation. 

Before constructing the random variables we look at the law of the order statistics. 
It follows immediately from the definition of the random variables that 

mE ú E N F = > t) P(6 > t,6 > t) = e-Alte-A2t 

e->.te->.t = P(1'/1 > t, 1'/2 > t) = P(1'/(I) > t), 

so the first order statistics are actually identically distributed. The lack of memory 
property for exponential variables together with the fact that 1'/1 and 1'/2 have the 
same intensity parameter). implies that the conditional second order statistics satisfy 
P(1'/(2) > t + UI1'/(I) = u) = e-.\t. In the corresponding probability for ú E O F = we have to 
condition on whichever variable is smaller. Introduce a = A1/(Al + A2)' so Al = (2). 
and >'2 = (1 - a)2>'. Note that a = P(6 < 6). We then have 

mE ú E O F = > t + r f ú E f F = = u) 

P(1'/(2) > t + UI1'/(I) = u) 

ae-(I-a)2>'t + (1 _ a)ca2>.t 

e->it. 
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Let f(a) denote the right hand side of the first equation. Then f(I/2) equals t.he 
right hand side of t.he second equation. It is easy to show that f is a convex function 
which attains it minimum at a = 1/2. Hence it follows that P(T)(2) > t + UI11(1) = 
u) ::; mE ú E O F = > t + ì ä ú E > F = = u). 

1'\ ow consider the coupling. Let U1, .•. , U4 be i.i.d. uniform random variables. 
\Ve const.ruct the first. order statistics ú ` ä F = and T/CI) by taking the inverse funct.ions 
of Ul (the fact that the distributions arc the same implies that ú ` ä F = == T/(l»)' \\'c 
construct ú E O F = and '1)(2) using U2 by letting ú E O F = be the inverse function of the conditional 
distribution of ú E O F = given ú E ä F D = evaluated at U2 and similarly for 11(2)' It follows that 
TI(2) ::; ú E O F D = Finally, we lise U3 and U1 to determine which one ç Ñ ú X = and ú ú I = and I); and 
T); respectively, is the smaller. Since 1/; and N N ú = are identically distributed, we simply 
let 11; = T)(l) with probability 0.5. T\Iore formally 

ê õ ú = 1](1) 1(u3S;o.s) + '77(2) l Uh >o.5) 

D Ñ z ú = ?J(1)1(fl3>O}:i) + 1](2)1(U3::;o.S)' 

We select which of ú X = and ú ú = is to equal ú ` f F D = so that the conditional probabilities 
become correct. This is done as follows 

ú X = ú E N F f E x > QWp m…g =:S<,1«1),«2)) + ú E O F f E ì Q [ é …g Wp S N …N F D …O F F =
ú ú = ú E g F f E ì Q [ é …g Wp E O N E E g F I E E O F F = + ú E O F f E ì QWp mE E ä Wp ä X D f E E ä F D E E O F F D =

It is straightforward to check that this coupling satisfies t.he conclusions of the theo-
rem. The distributional statement of the theorem is easy to show once the coupling 
has been constructed: 

The inequality follows trivially since TiC,) ::; ú E I F = almost surely. • 
The lemma above is used repeatedly in the following theorem. 

Theorem 6.2 Let Xl, ... , Xn and Yi, ... , ä ? ú = be independent exponentially distri-
buted random variables: X, ú =EXP(),i), and li ú =Exp()\), 7, = 1, ... , n, where )\ = 
(),l + ... + ),n) / n. Then there exists a coupling (X;, ... , X;" Y{, ... I v ú F = such that 

and (VI VI)12(l?" 1"' ) N N N ’ ’ ’ I f å ú = 1,"" n 

and for which 
l'('j) ::; X!j) , j = 1, ... , n, almost surely. 

In particular, 
v 

Yij) ::; XU), ] = 1, ... ,n. 
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Proof. Start with the independent sequence Xl, ... , X n. Select the first two vari-
ables Xl and X2 and use the lemma to construct 6 and 6 sueh that a) they are in-
dependent and both exponentially distributed with the same parameter (AI + A2)/2, 

v v 
b) min(6,6)smin(XI,X2), and c) ã ~ ñ E S D ú O F Wp ã ~ ñ E u f I u O F D = We have thus con-
structed the sequence E ú f D =6, X 3, . .. , Xn) of independent exponential variables with 
parameters 
((AI + A2)/2, (AI + A2)/2, A3, ... , An) with smaller order stati.stics than the original 
sequence. The same procedure is repeated, choosing the pairs having largest and 
smallest A-value, with the effect that the order statistics are reduced and the param-
eters are brought closer and closer to),. In the limit the order statistic converges 
to Zl, ... , Zn say, which has the same law as the order statistics of n independent 
exponential random variables with common parameter ),. Reordering these variables 
at random gives a sample distributed as Y1 , ... , } -;" satisfying the statement of the 
theorem. The proof is complete. • 

The theorem above is general and not related to epidemic models. The relevance 
of it for comparing the distributions of the final size for a homogeneous population 
with that of a population with varying susceptibility is made clear in the following 
corollary originally derived by Ball (1985). Below we let (X(t), Y(t)) denote the 
number of susceptibles and infectives respectively at t for the standard SIR epidemic, 
and (X{t), Y{t)) the corresponding numbers for the multitype epidemic. 

Corollary 6.3 Consider the (homogeneous) standard SIR epidemic En,m(\ 1) and 
the multitype epidemic En,m{A, I) in which different types differ only in terms of 
susceptibility, and which has the same distribution of infectious periods and the same 
initial numbers of infectives and susceptibles as the homogeneous epidemic (i. e. all 
infectious periods have the same distribution as I and Li m, = m, L, n, = nand 
A'i = AJ Assume further that A and {AJ are related by A = L J njAJ/n. Then it 

is possible to construct versions (X'(t), Y'(t)) and (X'(t), Y'(t)) of the two epidemics 
such that 

X'(t) :S X'(t), for all t, almost surely. 

As a consequence the final sizes satisfy Z' ú =2' almost surely. In particular it follows 
that v _ v _ 

X(t) :S X(t) and Z ú =Z 

for any n, m ú =1 and t ú =O. 

Proof. The proof follows immediately if we modify the Sellke construction slightly. 
Because individuals vary only in terms of susceptibility (i.e. A'j = AJ ) the infection 
pressure exerted on j-individuals, Aj{t) defined in (6.1), satisfies 

Aj{t) = (A]/n) L 1t Y;{u)du = (A]/ A).4(t), 
, 
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- t . 
where A(t) (Ajn) Li fo Y,('U)d'U. The mdependent and exponentially distributed 
individual thresholds {Qjd were all defined to have intensity parameter equal to 1. If 
we define instead the thresholds of j-individuals (Q},], ... ,Q},n,) to have parameter 
AJI A, j = 1, ... ,k, then we may assume all individuals to have the same infection 
pressure A(t). For this modified Sellke construction, it follows from Theorem 6.2 
that we may construct individual thresholds for the two epidemics such that the 
order statistics for the homogeneous epidemic is smaller than thosc of the model 
with varying susceptibility. Since we may use the same realisations of i.i.d. infectious 
periods for both epidemics it follows that the pressure A(t) for the homogeneous 
epidemic exceeds the pressure A(t) in the heterogeneous model for every t llsing a 
similar argument as that used in the monotonicity result in Section 3.3. This implies 
that even more individuals in the homogeneous model will become infected, and so 
forth. • 

The corollary above is not only interesting from a theoretical point of view. In 
real-life it is of course hard to know the susceptibilities of different individuals, eVEm of 
different subgroups in the population. If all that is known is the average susceptibility 
the corollary then states that a homogeneous population is the worst case. That 
is, if we calculate the probability assuming a homogeneous population, then any 
heterogeneity in susceptibility can only make things better in that probability lllass 
is shifted towards smaller outbreaks. 

Andersson and Britton (1998) have argued that the calibration by comparing dif-
ferent models having the same n.rithmr.tic lllean susceptibility is not necessarily a 
fair comparison. In fact, by the Sellke construction it seems fairer to have the same 
population-average of expected individual thresholds. The thresholds are exponen-
tially distributed, so a threshold with parameter A, has expected value A;-I. With 
this argument a population with parameters (Aj, ... ,An) should be compared with a 
homogeneous population with parameter AIl = (n- 1 L, A;-1 rl. This llleans that an 
alternative calibration is to assume that the harmonic means should coincide. An-
dersson and Britton (1998) perform this comparison and conclude that there is no 
corresponding strong result holding [or all nand 'm and all t. There is olle domination 
result stating that if m is fixed, then the pT'Obability of a major outbreak is llliuiIllised 
for the homogeneous communiLy. Their second result holds only for the final size. 
assuming large outbreaks in large communities. For this case they conclude that a 
homogeneous population gives a larger outbreak if the disease is highly infectious, 
whereas some heterogeneity in the population will cause a larger outbreak if the dis-
ease is less infectious. More precisely, they show that if AH{. 2' 2(1 - e-2 ) ;:::; 2.31 then 
a homogeneous model will give a larger outbreak than any heterogeneous population 
having the same harmonic lllean susceptibility, whereas if AU!' < 2(1 - e- 2 ) then 801l1e 
heterogeneous population with the same harmonic mean susceptibility will produce 
a larger outbreak in case of a major outbreak. 
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Exercises 

6.1. Consider the standard SIR multitype epidemic model with two different types 
and assume that the expected length of the infectious period is identical for the two 
types <] = <2(=1 say). Compute the basic reproduction numbE,r Ro in case 

a) Aij = O'i/3J (proportionate mixing). Extend the result to the case with k different 
types. 

b) Ai, = A + 0 and Aij = A, i "# j (i.e. the mixing rate is higher within types than 
between). 

6.2. Calculate numerically the final size vector for the two examples of Exercise 6.1 
with IT] = lT2 = 0.5 (in both cases), 0'] = /31 = 1, 0'2 = /32 = 2, A = 1 and 6 = 1. 

6.3. In Section 6.4 the final size domination of a homogeneous population was es-
tablished. To see if the difference is severe we here study the large population limits 
of the final size (Eqnations (4.1) and (6.2)) in some examples. Assume the initial 
proportion infectives is negligible (j.l = j.l, = 0) and without loss of generality that 
< = 1. 

a) Compare the final size of a homogeneous population having A = 1.5 with the over-
all final size in population in which half of the community has susceptibility A) = 1 
and the other half A2 = 2 (implying the same arithmetic mean). 

b) Do the same thing as in a) replacing 1.5 by 3, 1 by 0.5 and 2 by 5.5. 

c) Now use the calibration suggested by Andersson and Britton (1998) to compare a 
homogeneous population having A = 1.5 with a population with half of the individuals 
with Al = 1 and the other half having A2 = 3 (note that the harmonic mean is 
unchanged) . 

d) Repeat c) with all parameters doubled. 
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Random graphs provide us with a useful tool in understanding the structure of 
stochastic epidemic models. By representing the individuals in a population by ver-
tices and transmission links by arrows between these vertices, we obt.ain a graph that 
contains information on many important characteristics, such as the final epidemic 
size, the basic reproduction number and the probability of a large outbreak. The con-
nection between SIR epidemics and random graphs was observed by Ludwig (1974), 
and has then been more fully exploited by von Bahr and Martin-Liif (1980), Ball and 
Barbour (1990) and Barbour and Mollison (1990). In the first two sections of this 
chapter the random graph interpretation of the standard SIR epidemic model will 
be given; we also show that the special case of a constant infectious period yields a 
particularly nice class of random graphs. 

Random graphs can also serve as models of social networks. \Ve can give a simple 
reason for introducing the network concept in epidemic modelling. Many of the 
classical results for the standard SIR epidemic model require the population size n 
to be large. But, according to the modelling assumptions, contacts between two 
given individuals in a large population occur at a very low rate; in principle, this 
implies that the possibility of repeated contacts is not taken into account. This 
observation indicates that the assumption of homogeneous mixing is not very realistic 
when describing epidemic spread in large populations. If we wish to allow repeated 
contacts between certain pairs of individuals, a possihle solution is to pick a graph 
describing the relations between individuals, and then let the disease spread along 
the social network so obtained. In that way each individual is assigned to a small 
neighbourhood of other individuals, and can then contact each of her neighbours at 
a 'normal' rate. This subject is now receiving increasing attention, see e.g. Altmann 
(1995, 1998), Rand (1997), Diekmann et al. (1998) and Andersson (1998, 2000). 
It is far from obvious how a suitable form of the network is to be chosen. The 
graph should be complicated enough to catch something of the sometimes extremely 
irregular contact pattern in a population of living organisms, but at the same time 
simple enough to lend itself to mathematical analysis. Here (Section 7.3) we will just 
scratch the surface by explaining how to run the lvIarkovian version of the standard 
SIR epidemic on a very simple network (whereby the Markov property is destroyed!). 

We have so far presented various ways of modelling social relatlOns in a popu-
lation, ignoring completely the possibility of geographical spread of the disease. In 
Section 7.4 we make up for lost ground by presenting some results for a standard sm 
epidemic model on the two-dimensional lattice, where the spatial element determines 
the progress of the epidemic completely. In order to approximate reality, social space 
and geographical space should of course he considered simultaneously, but to find 
natural models for both remains an open problem. 
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7.1 Random graph interpretation 

Consider again the standard SIR epidemic En,mUI, 1), endowing the individuals with 
random variables i E ã ú ä F D =i E ã ú O F ? ? = , In· Now represent the individuals by vertices 
of a graph, giving the vertices labels -(m - 1), -(m - 2), ... , n. If the ith individual 
ever becomes infected, we know that she will contact a given individual j in the 
population with probability p, = 1- exp( -AI;/n). Hence, for each given ordered pair 
(i,j) (i t= j) of vertices of the graph, let us draw an arrow from i to j with probability 
Pi, the presence of such an arrow having the following interpretation: "If i ever 
becomes infected then i will contact j during her infectious period". Strictly speaking, 
these arrows are not drawn independently, but they are conditionally independent 
given the I-variables. There remains only to mark the vertices -(m - 1), -(m -
2), ... ,0 (representing the initial infectives) and just follow the arrows. The size of 
the subgraph traced in this manner is exactly the final epidemic size. 

The random graph obtained above can be described as a digraph (directed graph) 
with prescribed distribution of the out-degrees (the number of out-going arrows from 
a given vertex). Evidently we lose information on events referring to time when 
making this construction, since only the epidemic chain is recorded; the point is that 
characteristics related to the final epidemic size are found to have nice graph-theoretic 
counterparts. 

As a simple application we use random graphs to indicate that even in a situation 
where the infectivity profile is extremely complicated, many results may be derived 
with the same ease as for the standard SIR epidemic. Consider the sample space 
consisting of all nonnegative functions A(t), t :::: 0, with finite integral, and put 
some probability measure P on this space. Now let ^ ú E ã ú ä F E í F I = ^ ú E ã ú O F E í F I =... , /\.,,(t) 
be an independent sample, A,(t) giving the infectiousness of individual i at time t 
after infection. If the ith individual ever becomes infected, she will contact a given 
individual j during her infectious period with probability 

p, = 1 - exp ( J ú =100 A;(t) dt) . 
vVe can now draw a directed graph and trace the epidemic flow exactly as before. 
Using this representation, quantities such as the basic reproduction number and the 
distribution of the final epidemic size may easily be derived. Since latency periods 
and complicated time dependent infection rates can be modelled using this device, 
it is easy to form the impression that we have found a way to model the spread of 
just about any infectious disease. Note, however, that the population is st.ill assumed 
to be homogeneously mixing, in the sense that all susceptibles are equally likely to 
contract the disease at all times; this decreases drastically the realism of the model. 

Figure 7.1 illustrates such a random graph with m = 1 initially infectious (marked 
with a large black circle) and n = 11 initially susceptible individuals. There are 
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Figure 7.1: Directed graph representation of a realization of Em,n (A, 1) with Tn = 1 
and n = 11. The initial infective is the larger black circle, while all other ultimately 
infected are smaller black circles. Small white circles correspond to uninfected indi-
viduals. 

Z = 4 additionally infected in the illustration (infected individuals have smaller black 
circles). Note that individuals to the right do not become infected even though there 
are potential contacts. The reason is that the disease never reaches this subgroup. 
The double arrow to the far right has the intcrpretation that either individual could 
have infected the other, had she been infected. 

7.2 Constant infectious period 

If the infectious period in the standard SIR epidemic model is constant, it turns out 
that the random graph formulation involves the classical Bernoulli random graphs, 
which we describe next. 

The theory of random graphs was introduced by Erdos and Renyi (1959) and 
has been extensively studied ever since. In particular, the class of Bernoulli random 
graphs has been very thoroughly explored, see e.g. Bollobas (1985) and Barbour et al. 
(1992). This graph model, often referred to simply as the 9(N,p) model, is defined 
as follows. We are given a set of N labelled vertices. With probability p, we connect 
a given pair of distinct vertices i and j by drawing an (undirected) edge between 
them. These connections are made independently of each other. It is clear that the 
degree D, of the l:th vertex, i.e. the number of vertices adjaccnt. to this vertex, is 
binomially distributed with parameters N - 1 and p, so that the average degree is 
given by (N - l)p. In order to keep the size of the neighbourhood bounded as N 
grows large, we have to put p = fJ/N, for some fJ > O. This implies that D, will be 
approximately Poisson distributed with parameter fJ if N is large, according to the 
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classical Poisson approximation theorem. 

Two vertices i and j are said to belong to the same component if and only if there 
exists a path of edges between i and j. It is thus clear that any graph consists of a 
number of disjoint connected components. Properties of these components have been 
extensively studied for the Bernoulli graph model. In particular, the following result 
is well-known in random graph theory. 

Theorem 7.1 Consider the Q(N,p) random graph model. Assume p = PN = (liN, 
N --+ 00. If (3 :::; 1 then a vertex chosen at random will belong to a component of 
size 0(1). On the other hand, if (3 > 1 then the relative size of the largest component 
converges in probability to some constant C strictly between 0 and 1, as ]V --+ 00. 

Also, a randomly chosen vertex will belong to this giant component with probability C 
and it will belong to a component of size 0(1) with probability 1 - C. 

Turning again to the graph interpretation of the standard SIR epidemic, let us 
note that if the infectious period is constant, I == i, then the arrows are drawn 
independently of each other, and the probability of drawing an arrow from i to j 
is the same for all ordered pairs (i,j), i =I- j. Moreover, since only one (if any) of 
the two arrows is actually used for disease transmission, it is enough to draw one 
undirected edge between i and j, the presence of such an edge having the following 
interpretation: "If i ever becomes infected then i will contact j, and vice versa". 
Thus, setting N = n + m and P = 1 - exp(-At.ln), we have arrived at the Q(N,p) 
random graph model' 

Random graph theory can now be invoked to derive results for the corresponding 
epidemic process. For instance, Theorem 7.1 above immediately implies that, in the 
case where the basic reproduction number exceeds 1, the asymptotic probability of a 
large outbreak (the probability of picking a vertex belonging to the giant component) 
is equal to the relative size of a large outbreak (the size of the giant component). Such 
a result can of course also be derived by calculating the explosion probability of the 
approximating branching process and comparing it with the solution to the final size 
equation, but the graph approach gives us much more insight to the phenomenon. 

7.3 Epidemics and social networks 

We have indicated above how to use directed (undirected) random graphs to describe 
the epidemic flow, the arrows (edges) representing possible channels for disease trans-
mission. \Ve now proceed to show how to run an epidemic process on a random graph, 
with the edges of the graph representing relations bet.ween individuals. Individuals 
related in this way will be called neighbours. First the epidemic process on a fixed 
arbitrary graph is defined, and thcn some large population results are derived in thc 
case where the underlying network is modelled as a Bernoulli random graph. 
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An epidemic process on a fixed graph 

Consider a closed population consisting of N = n + m individuals. Represent the 
neighbourhood structure in the population with a labelled undirected graph g, so 
that the ith and jth vertices of the graph are connected by an edge if and only if 
individuals i and j are neighbours. The graph will often be the result of some random 
experiment. We assume that the structure is fixed during the course of the epidemic. 
Let G be the adjacency matrix of the graph g, so that Gij = 1 if i and j are connected 
and Gij = 0 otherwise. It follows that G is a symmetric binary N x N matrix with 
zeros in the diagonal. 

Let us next define the dynamics of the epidemic process. We pick m initially in-
fectious individuals at random from the population. An infectious individual remains 
so for an arbitrarily distributed time period I. During this time period she makes 
'close contacts' with each of her neighbours according to the points of a Poisson pro-
cess with intensity A. If the individual so contacted is still susceptible, then she will 
immediately become infectious. After the infectious period, t.he infectious individual 
recovers and is then immune to further infections. All infectious periods and Poisson 
processes are assumed to be independent of each other. 

Denote the types 'susceptible' and 'infectious' by the letteIs X and Y, respectively. 
Generally speaking we set Ai = 1 if the ith individual is of type A, and Ai = 0 
otherwise. Then define the number of individuals, connected pairs and connected 
triples with given type configurations in the following way: 

n+m 

[A]n = I: A;, 

[AB]n 

[ABC]n 

;=1 
n+m 

I: AiGijBj, 
i,j=l 

n+m 

I: AiGiJBjGjkCk. 
i,j,k=1 
i# 

For instance, [XY]n(t) is the number of neighbours i, j where i is susceptible and j 
is infectious at time t. If the total number of neighbours of a given individual is kept 
bounded, then all the quantities above are O(n). Note that [AB]n = [BA]n, and that 
each pair in [AA]n is counted twice. 

Bernoulli networks 

As an illustration, we take the Bernoulli graph model as our underlying network. Set 
N = n + m, the total number of individuals, and put p = /3/n for some f3 > O. For 
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an outcome 9 belonging to 9(N,p) we run an epidemic on 9, where for simplicity it 
is assumed that the infectious period is exponentially distributed with intensity T 

The basic reproduction number of this model is easily derived. Introduce an 
infectious individual in a susceptible population consisting of n individuals, where n 
is large. This individual has on the average (3 neighbours, each of whom will become 
infected with probability )..I().. + I), hence 

o J ú =
0-).+1' 

We now describe the time dynamics of the model. Assume that the proportion 
min of initially infectious individuals tends to a nontrivial limit Jl as n tends to 
infinity. Let us assume that [A]nln, [AB]nln and [ABC]nln all tend to deterministic: 
limits as n -+ 00, and denote these limiting processes by a, lab] and [abc], respectively. 
In Rand (1997) the following system of equations is derived: 

dx 
dt 
dy 
dt 

d[xx] 
dt 

d[xy] 
dt 

d[yy] 
dt 

-)..[xy], 

).[xy] - IY, 

-2)..[xxy], 

).. ([Xl;Y] - [YTY] - [TY]) - I['XY]' 

2).. ([y:[y] + [XV]) - 2'r[yy]. 

Let us explain the fourth line; the other lines are then obtained by similar reasoning. 
If the central individual j in a connected X XV-triple (i, j, k) is infected by the in-
dividual k, we gain an XV-pair (i, j). On the other hand, we may lose an XV-pair 
(j, k) in three ways: t.he individual j in an YXY-tripJe (i,j, k) is infected by the 
individual i; k infects j direct.ly; k becomes removed. The fourth line now follows 
readily. 

The system is not very useful as it stands, since no description of the time dynamics 
of the variables [abc] is provided. Fortunately, the equations can be closed at the level 
of pairs by the following device. Consider a connected triple (i, j, k). Then, 

If n is large, then the influence on i of the second neighbour k is negligible given the 
state of the first. neighbour J, hence asymptotically, 

P (Ai = 11 B j = 1) 
P (A,B) = 1) 

P (B j = 1) . 
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This translates to the formula 

[abc] = [ab][bc] 
b 

69 

for all a, b, c. 

Finally, we insert this relation into the system above to obtain a closed system in the 
five variables x, y, [xx], [xy] and [yy]. The initial conditions are given by x(O) = 1, 
y(O) = J-t, [xx](O) = (3, [xy](O) = (3J-t and [yy](O) = (3J-t2. 

This system can be simplified considerably. The equation for [yy] is superfluous, 
since [yy] does not appear in the other equations. Also the equation for [xx] can be 
crossed out, since by writing down the differential equation for x 2 and comparing it 
with the differential equation for [xx] it follows that [xx] = (33.:2 at all times. Finally, 
we define fj = [xy]lx, the number of infectious neighbours of a typical susceptible 
individual. It can be verified that 

dfj 1 ( d[xy] dX) , - = - x- - [xy]- = ((3)..x - ).. - 'Y) Y 
dt x 2 dt dt ' 

resulting in the differential system 

dx 
dt 
dy 
dt 
dy 
dt 

-)..xfj, 

)..xfj - 'YY, 

((3)..x - ).. - 'Y) y, (7.1) 

with initial condition x(O) = 1, y(O) = J-t and y(O) = (3J-t. For a rigorous derivation of 
these results (and more), see Altmann (1998). 

The equation for the final size proportion T, where the proportion of initial infec-
tives is included as in Chapter 4, is obtained as follows. Divide the third line of (7.1) 
by the first one and integrate to get 

.\: 'Y log (x) = -,6(1 + J-t - x) + fj. 

At the end of the epidemic fj = y = 0, implying that 

1 + J-t - T = exp {-ú =T} . 
.\+'Y 

Note that this transcendental equation is of the same form as the final size equation 
(4.1). The basic reproduction number Ro appears in the formula, as it should. 

It is clear that there should be a qualitative difference in behaviour between the 
standard SIR epidemic in a uniformly mixing population (small per capita infection 
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rate, but a large number of individuals can be contacted) and the same type of epi-
demic on a social network (large per capita infection rate, but only a small number 
of individuals can be contacted). Indeed, an individual with an extremely long in-
fectious period might infect a huge number of individuals under the assumption of 
homogeneous mixing. In a social network, however, such an individual will at most 
infect all of her neighbours, which is probably a small number, and will otherwise 
have no impact on the spread of the disease. Let us explore these thoughts further 
by indicating how to retrieve the classical Kermack-McKendrick model as a limit of 
(7.1) as the number of neighbours (3 -700 and the infection rate .\ -7 0 in such a way 
that (3).. -7 b > O. 

Using (7.1) we note that 

d (if) (if) dt 73 - y = -, 73 - y + R, 

where R = -)..if / (3 is small given the conditions on the parameters .\ and (3. Gronwall's 
inequality (Lemma 5.1) applied to the function lif/(3 - yl now shows that if/(3 and y 
coincide in the limit, hence we need not bother with the variable if. We end up with 
the system 

dx 
dt 

-bxy, 

dy 
bxy -,y, 

dt 

which we recognize as the Kermack-YlcKendrick model. Also, Ro = (3A!()..+,) -7 bl! 
which is perfectly in line with the above findings. 

7.4 The two-dimensional lattice 

Consider the two-dimensional lattice Z2. Our graph q is obtained by drawing an PrlgP 
between two sites i, j E Z2 if and only if Ii - j I = 1 (nearest neighbour interaction). 
Then a Markovian epidemic process is run on q as described in Section 7.3 (without 
loss of generality, assume, = 1). Note however that this time we are not considering 
a sequence of processes on larger and larger finite graphs but rather a single process 
on an infinite graph. This and related models have been studied in e.g. Mollison 
(1977), Kuulasmaa (1982), Kuulasmaa and Zachary (1984) and Cox and Durrett 
(1988). For an excellent introduction to the general theory of interacting particle 
systems and percolation processes, see Durrett (1995). Also, the book by Liggett 
(1985) provides a thorough treatment of the subject. Following Cox and Durrett 
(1988) we will discuss the critical infection rate, a quantity that corresponds to the 
basic reproduction number, and the asymptotic shape of the epidemic given IlOIl-

extinction. 
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Critical infection rate 

In order to discuss the critical infection rate, we again draw a directed graph to 
describe the disease spread without explicitly referring to the actual time dynamics. 
We know that a given site i will be infectious for an exponential holding time with 
mean 1 (if she ever becomes infected). If i contacts a given neighbour site j during 
the infectious period we draw an arrow from i to j, and we say in this case that the 
oriented bond (i, j) is open. Otherwise (i, j) is declared to be closed. Now let C be 
the set of sites that can be reached from 0 by a path of open bonds. It follows that 
C is exactly the set of sites that will ever become infected if we start by making the 
origin infectious. Now the critical infection rate may be defined as 

Ac = infp : P(lCI = 00) > a}. (7.2) 

By definition, a major outbreak has positive probability if and only if Ro > 1. So if 
o < Ac < 00 then our basic reproduction number may be written simply as Ro = AlAe, 
but this notation has not been acknowledged in the literature. 

It is very difficult to find good bounds for the critical rate Ac, or equivalently 
the critical probability Pc = Ac/(Ac + 1). By using the so called zero-function and 
the beautiful comparison theorem of Kuulasmaa (1982) some progress can be made. 
as we now explain. The zero-function cjJ is defined as follows. For each subset A of 
{i E Z2 : Iii = I} set 

cjJ(A) = P(all bonds (0, i), i E A, are closed). 

Easy calculation yields 

dJ(A) _ 1 - p 
. - 1 - p + piAl' where 

Fix p, and consider two extreme percolation processes, with zero-functions cjJ0 and cjJI 
and with critical probabilities é ú = and é ú I = respectively. The first one is obtained by 
opening the bonds with probability p independently of each other. Obviously, 

The other extreme is obtained by, for each site i, opening all the bonds (i, i + j), 
Ijl = 1, with probability p and closing all of them with probability 1 - p. We have 

IAI ú =1. 

It is easily checked that cjJ°(A) ::; cjJ(A) ::; cjJl(A) for all A, and the comparison theorem 
tells us that é ú = ::; Pc ::; é ú K = The number mú = is exactly ú = (see Kesten, 1982), while the 
other probability mú = is unknown. Numerical studies in the physics literature give 
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é ú = ú = 0.5927. Translating to rates yields 1 :S Ac :S 1.4552. Simulation studies by 
Kuulasmaa (1982) provide us with the narrower interval 

1.12 :S Ac :S 1.25. 

Asymptotic shape 

Let ((t) be the set of removed cases at time t. If the origin is infected initially then, 
given non-extinction, we expect the epidemic to grow in all directions of the plane at 
a linear rate. The shape theorem of Cox and Durrett (1988) states the following: 

If A > Ac then, given non-extinction, there is a convex set V <:::; R2 such that for 
any E > 0 we have 

t(l - E)V n C <:::; ((t) <:::; t(l + E)V (7.3) 

for t sufficiently large. Moreover, the set of infectious sites is situated close to the 
boundary of tV. The set ((t) necessarily contains many "holes", i.e. areas of suscep-
tible sites that are surrounded by removed sites. Not much is known about the actual 
shape of the set V. 

Exercises 

7.1. Consider the graph interpretation of the standard SIR epidemic given in Section 
7.1. Describe the distribution of the out-degrees and the distribution of the in-degrees. 
What happens with these distributions as n -* 00, m = I? 

7.2. Check the details in the derivation of Eq. (7.1). Also, show that for some choices 
of parameter values p, A, 'Y the proportion of infectives y is increasing initially even 
though Ro is below 1. 

7.3. An epidemic process on a regular network. A graph on N = n + m vertices 
is called k-regular if all vertices have degree k. For N large, pick a k-regular graph 
at random and run the epidemic model of Section 7.3 on this graph. Assuming 
m = 1 (so It = 0 asymptotically), find conditions on (k, A, 'Y) that render possible 
a large outbreak. Also, derive heuristically the following equation for the final size 
proportion T: 

1 _ T = (_'Y_ + _A_s ) k 

A+'Y A+'Y 
where s= 



8 Models for endemic diseases 

All the epidemic models encountered so far have assumed a dosed population, i.e. 
births, deaths, immigration and emigration of individuals are not considered. How-
ever, when modelling the spread of a disease with a very long infectious period or 
a disease in a very large population, dynamic changes in the population itself can-
not be ignored. Indeed, in a large community the susceptible population might be 
augmented fast enough for the epidemic to be maintained for a long time without 
introducing new infectious individuals into the community; our common childhood 
diseases are typical examples. Such a disease is called endemic. 

Already Bartlett (1956) proposed a stochastic epidemic model for endemic dis-
eases. This model was then modified slightly into what is known as the SIR epidemic 
process with demography (van Herwaarden and Grasman, 1995, and Nasell, 1999). In 
Section 8.1 this model is presented, and some large population results for it are given. 
We also discuss briefly the time to extinction of the epidemic, and the interesting 
notion of critical community size, loosely defined as the population size needed for 
the epidemic to persist over a given time horizon with a given probability. 

Another way of achieving endemicity is to retain the assumption of a closed pop-
ulation, but to suppose instead that infected individuals lose their immunity after 
some time. It should be noted, however, that this is an artificial way to keep the 
epidemic going. In reality, we would not expect to observe a fixed population where 
individuals contract the same disease over and over again. The special case, where 
individuals become susceptible immediately after the infectious period, turns out to 
be particularly easy to analyse, much easier than the SIR epidemic with demography. 
This model, called the SIS epidemic model, is discussed in Section 8.2. In particular, 
the time to extinction is investigated in some detail. Throughout this chapter the in-
fectious period is assumed to be exponentially distributed, thus leading to Markovian 
epidemic processes which can be well understood using the techniques of Chapter 5. 

8.1 The SIR model with demography 

Let us describe the stochastic SIR model with demography, starting with the pop-
ulation dynamics. Individuals are born into the population at a constant rate On 
and each of them has an exponentially distributed lifetime with intensity 0, i.e. the 
average lifetime is given by I/O. The population size will thus fluctuate around the 
quantity n. The reason for choosing size-independent birth rates is to avoid popula-
tion extinction or explosion. Assume now that the population is homogeneous and 
homogeneously mixing. Initially there are n susceptible and m infectious individ-
uals in the population. A given infective stays infectious for a time period that is 
exponentially distributed with intensity I (unless she dies for other causes than the 
disease before the end of that period). During that time she contacts a given individ-
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ual at rate A/n. If the contacted individual is susceptible, she immediately becomes 
infectious and proceeds to infect other individuals. All random variables and Poisson 
processes involved are assumed to be mutually independent. 

Denote by X(t) the number of susceptibles at time t, and let Y(t) denote the 
number of infectives at time t. Then (X, Y) = {(X(t), Y(t)); t ;::: O} is a bivariate 
continuous time Markov process with the following transition rates: 

from to 
(i,j) O+I,j) 

(i-l,j) 
(i-l,j+l) 
(i,j - 1) 

at rate 
en, 
ei, 
Aij/n, 
(r + e)j. 

The four transitions above correspond to births of susceptibles, deaths of suscep-
tibles, infections of susceptibles, and recovery or deaths of infectives, respectively. 
The possibility of births and deaths of individuals is the only feature that distin-
guishes this model from the standard Markovian SIR epidemic model. As we will see 
shortly, this new component in the model will have a great impact on the qualitative 
behaviour of the epidemic. 

Law of large numbers 

Consider a sequence (Xn , Yn ) of SIR models with demography, all of the proc('sses 
having the same parameters e, A and ry. Assuming that the proportion m"ln tends to 
f.l > 0 as n --7 00, we first derive a law of large numbers for the sequence (Xn , Y,,) = 
(Xnln, Yn/n). We wish to apply Theorem 5.2. The rates (Je of Section 5.2 are as 
follows: 

i3(l,O) (x, y) = e, 
i3(-1,1) (x, y) = AXY, 

leading to the drift function 

i3(-l,O)(X, y) = ex, 
(J(O,-l) (x, y) = (r + ely, 

F(x, y) = (-AXY + e(1 - x), AXY - (r + e)y). 

Exactly as in Section 5.5, we check that the conditions of Theorem 5.2 are fulfilled. 
Hence (Xn(t), Yn(t)) tends to (x(t),y(t)) in probability uniformly on compact time 
intervals as n --7 00, where (x(t), y(t)) is the solution to the system of differential 
equations 

dx 
dt 
dy 
dt 

-AXY + e(1 - x), 

AXY - (r + ely, 
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with initial condition (x(O),y(O)) = (I,ll). This system cannot be solved explicitly, 
but we can understand its behaviour for large t by finding the stationary points, i.e. 
the points where the time derivatives are zero. 

Let us introduce two auxiliary parameters. The basic reproduction number is 
given by Ro = )../ b + B), since the true infectious period is exponentially distributed 
with intensity 'Y+B, taking into account the possibility of death before recovery. Also, 
let a = b + B)/B be the ratio of average lifetime to average duration of infection. 
There are two stationary points, namely the disease-free state (1,0) together with the 
point 

( ' ') = ('Y+B _B (1- 'Y+B)) = E ú =Ro -1) 
x, y A' 'Y + B A Ro' aRo . 

The first of the stationary points is stable for Ro < 1 and unstable for Ro > 1, 
while the second one is stable for Ro > 1 (and is otherwise negative and therefore 
uninteresting). In other words, if Ro < 1 the infection is predicted to die out fairly 
quickly. On the other hand, if Ro > 1 then it will rise towards a positive infection 
level, called the endemic level. 

Central limit theorem 

Assume that Ro > 1 and suppose for simplicity that the process is started close to the 
endemic level (ni, nfj). Since the process is positively recurrent and all states (i, j) 
with j ú =1 communicate, the process will become absorbed into the set of disease-free 
states {(i,O) : i ú =O} in finite time. Prior to absorption we expect to observe small 
fluctuations around the endemic level. To examine the nature of these fluctuations, 
define 

t ú =O. 

We wish to apply the central limit theorem of Section 5.4. Using the notation of that 
section, we have 

" (-Afj - B -AX) (-Ro -a) 
8F(x, y) = )..fj )..i - 'Y - B = B Ro - 1 ° 

and 

Here we have expressed all quantities in terms of the new parameters Ro and a, using 
that X = 1/ Ro, fj = (Ro - 1)/(aRo), A = BaRo and 'Y + B = Ba. It can be shown that 
the matrix function <I>(t, s) of Theorem 5.3 splits into a product <I>(t)<I>-l (8), hence 
the covariance matrix ú E í F I = t 2': 0, satisfies the differential equation 

ú ú == ~ c E ñ I ó F ú =+ ú E ~ c E ñ I v F Ñ =+ G(x,y), (8.1) 
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by straightforward calculation using the variance expression of the theorem. We 
conclude that (Xn , Yn ) converges weakly on compact time intervals t.o a Gaussiall 
process (X, Y) with mean zero and covariance matrix r:. In particular, an explicit 
É ñ é ê É ë ë á ç ú = for the covariance matrix for large t is easily derived as the stationary 
solution, r:, to (8.1). By easy calculation, 

t = ú =(a + R. 0 - Ro ) 
R6 -Ro Ro-1+R6/a . 

Time to extinction 

We still assume that Ro > 1. As already noted above, the time to extinction 

Tn = inf{t ::0: 0 : Yn(t) = O} 

from the endemic level is a.s. finite, for any fixed n. It is a classical (and very 
difficult) problem, going back to Bartlett (1956), to obtain estimates of this random 
variable. Not even the expected time to extinction is easily found. An approach 
that at first sight seems natural is to let the population size tend to infinity and 
regard disease extinction as the result of a large deviation from a high endemic level. 
Such an analysis is performed in van Herwaarden and Grasman (1995), who derive a 
complicated asymptotic formula for E(Tn). 

Nasell (1999) takes a quite different approach when deriving heuristically an ap-
proximate expression for E(Tn). He notes that the coefficient of variation of the 
number of infectious individuals in endemicity is given by 

Vii/Ro - 1 + R6Irx aRo a 
Ro n(Ro - 1) ú = s á á ú D =

where the last approximation is due to the fact that a » R5. Indeed, if we assume 
that the average lifetime is 80 years and consider a disease with an infectious period 
of two weeks, say, then a is about 2000. Thus, even if the population size is several 
millions, the coefficient of variation above is still quite large. This observation suggests 
that for a real-life disease in a homogeneously mixing community, extinction is likely 
to be caused by a normal fluctuation from a not so high endemic level. rather than 
by a large deviation from a high level. Simulation results also show that, for realistic 
parameter values, the Nasell (1999) formula gives a much better approximation to 
the observed time to extinction than does the formula derived by van Herwaarden 
and Grasman (1995). 

Finally we mention the notion of critical community size. Needless to say, the 
distribution of Tn depends on the parameters Ro, a and e as well as the population 
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size n. The critical community size nc = nc(t,p) with time horizon t and extinction 
probability p is defined as the solution n to the equation 

P(Tn > t) = 1 - p. 

If p is small, this means that for community sizes larger than n( the infection is likely 
to persist more than t time units. Nilsell (1999) obtains estimates of the critical 
community size for some sets of parameter values. 

Below, two simulations of the SIR model with demography are shown in Figure 
8.1. In both simulations n = 100, 000, Ro = 10 and a = 3750 (corresponding to 
an infectious period of 1 week and average lifetime of 75 years) implying that the 
equilibrium is at (ni, nf)) = (10000,24). The y-axis corresponds to the number of 
infectives and the x-axis to the number of susceptibles. In the top figure the disease 
becomes extinct rather quickly, whereas it seems to become endemic in the lower 
figure. 

8.2 The SIS model 

The stochastic SIS model for endemic infections is defined as follows. Suppose that 
we have a closed homogeneously mixing population consisting of n individuals. We 
let m of these individuals become infectious at time t = O. Each infectious individual 
remains infectious for a time period that is exponentially distributed with parameter 
'Y. During that time the individual makes contact with a given individual at rate A/n. 
If a contacted individual is susceptible then she immediately becomes infectious. An 
infectious individual becomes susceptible again right after the infectious period, in 
contrast to the SIR epidemic models where the infectious period is followed by life-long 
immunity to the disease. All infectious periods and Poisson processes are assumed to 
be mutually independent. 

Since individuals are either susceptible or infectious, it is enough to keep track of 
the number of individuals in the infectious state, say. Denote by Y(t) the number 
of infectious individuals at time t. Then Y = {Y(t); t 2 a}, can be described as a 
simple continuous time birth and death process on the state space Sn = {a, ... ,n}, 
having the following transition rates: 

from to at rate 
i + 1 Ai(n - i)/n, 
i-I 'Yi, 

Y(O) = m. Note that we are using the total population size rather than just the 
number of initial susceptibles when scaling the infection rate. The reason is, of course, 
that the initial infectives may become infectious several times over the course of the 
epidemic and are thus taking a much more active part in the progress of the epidemic 
than in the SIR case, where they were merely used to start up the process. 
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Figure 8.1: Simulations of the SIR model with demography for average population 
size n = 100, 000 and equilibrium point (10000 ,24). In the top figure the disease 
became extinct quickly (absorbed by the x-axis) whereas the disease persisted for a 
long time in the bottom figure. 
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Law of large numbers 

Consider as usual a sequence Yn of epidemic models, all with the same infection rate 
A and recovery rate "(. If the proportion of initial infectives, mn/n, tends to a non-
trivial limit /1-, 0 < )1, < 1, as n tends to infinity, we expect a law of large numbers for 
the scaled process Yn = Yn/n to be valid. To prove this, we use Theorem 5.2. Using 
the notation of Chapter 5, we have /31(Y) = Ay(1 - y) and /3-dy) = ,y, so that the 
drift function is given by 

F(y) = Ay(1 - y) - ,y. 

This function is easily seen to satisfy the condition of Theorem f .. 2, hence we conclude 
that IYn(t) - y(t)1 tends to zero in probability uniformly on compact time intervals 
as n ú =00, where yet) is the solution to the differential equation 

dy 
dt = Ay(1 - y) - 'YY, 

yeO) =)1,. The explicit solution is given by 

_ (1 - f) /1-e(>'-'Y)t 
yet) - 1 - f + p, (e(>'-'Y)t - 1) 

if A f. " while yet) = /1-/(1 + A/1-t) if A = 'Y. The basic reproduction number is given 
by AI!. We note that yet) ú =0 as t ú =00 if AI! :s: 1. On the other hand, if AI! > 1 
then yet) ú =f) = 1 - 'YIA > 0 as t ú =00. In this case, the value nf) is called the 
endemic level of the process. Even though the deterministic motion yet) is just an 
approximation of Yn(t) valid within a fixed finite time horizon, these results indicate 
that the stochastic SIS model will behave very differently depending on whether the 
basic reproduction number is below or above 1. 

Central limit theorem 

In order to study the fluctuations of the process Yn , we define the yn-scaled centered 
process 

t ::::: o. 
We restrict ourselves to the interesting case where A/, > 1 and the process is started 
close to the endemic level, i.e. Yn(O) ú =1 - 'Y/A in probability as n ú =00. Let us 
apply Theorem 5.3. We have 

8F(f)) 

G(f)) 

wet, s) 

A - , - 2Af) = -(A - ,), 

Ay(l-y)+,y= 2;(A_,), 

e-(>'-'Y)(t-s) , 



80 8 MODELS FOR ENDEMIC DISEASES 

and the theorem states that Yn converges weakly on compact time intervals to a 
Gaussian process Y with mean zero and variance function 

Var(Y(t)) 

The corresponding formulas become more complicated if the process is started away 
from equilibrium, or in the case where the basic reproduction number is below 1. 

Time to extinction 

We proceed to study the time Tn to extinction of the process Yn, 

Tn = inf{t ú =0 : Yn(t) = O}. 

Since Yn is irreducible on the set Sn \ {O} and has the state {O} as absorbing state, 
the time to extinction is a.s. finite. It is of considerable interest to understand what 
happens to Tn as the population grows to infinity. The theorem below shows that the 
time to extinction for the stochastic model is a quantity that reflects the threshold 
behaviour of the deterministic process. In the case A :::; , the time to extinction is 
always relatively short, while in the case A > , it may be astronomical. 

Before stating the result we need a definition. We say that an and bn are asymp-
totically equivalent as n --+ 00, an '" bn, if the quotient anlbn tends to unity as n 
becomes large. 

Theorem 8.1 The time Tn to extinction of the stochastic SIS model has the following 
asymptotic properties: 

(AI) A > , and mnln --+ J1 > 0 as n --+ 00 : Tn/ E(Tn) --+ U in distribution, where 
U is exponentially distributed with parameter 1. Moreover, 

(8.2) 

as n --+ 00, where \7 = log(Ah) - 1 + ,IA > o. 

(A2) A>, andmn = m ú =I for aUn: Tn --+ T a.s. whereP(T < (0) = blA)m < 1. 
Here T is the extinction time for a linear birth and death process with birth rate 
Ai, death rate ,i and with m individuals in the beginning. On the set where T 
is infinite, Tnl E(Tn) --+ U in distribution, with U and E(Tn) as above. 
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(Bl) A::;, and mn/n -+ J.L > 0 as n -+ 00 : We have that 

(r - A(1- p))Tn -logn -logjL -log (1- D y E N ú ú = J.1)) -+ W 

in distribution, where W has the extreme value distribution: 

P(W ::; w) = exp{ _e-W }. 

(B2) A ::; , and mn = m :2 1 for all n: Tn -+ T a.s. with T as in (A2), but now 
P(T < (0) = 1. 

The theorem states the following: (AI) If the basic reproduction number Ro = A/I 
is above 1 and the number of initial infectives is large, then the time to extinction 
Tn grows exponentially with the population size. (A2) If Ro > 1 and we start with a 
small number of infectives, then a kind of threshold phenomenon presents itself. On 
one part of the sample space Tn stays small, on the other part q ú =grows exponentially. 
(Bl) If Ro ::; 1 but the number of initial infectives is large, then Tn behaves like log n. 
(B2) Finally, if Ro ::; 1 and there is a small number of infectious individuals in the 
beginning then the time to extinction is always small. 

Proofs and references are given in Andersson and Djehiche (1998). Below we 
indicate the proof of the result in the most interesting case (A2). (AI) and (A2) fall 
in the class of results on the exponential limiting distributions of first passage times 
of birth and death processes into rare sets of states, see e.g. Keilson (1979). The 
excellent book by Aldous (1989) gives a henristic treatment of related topics. The 
results (A2) and (B2) partly rely on the coupling argument given below. 

The paper by Wisell (1996) is mainly concerned with the so··called quasi-stationary 
distrilmt'i(JT! of the process Yn , defined by 

Qn(i) = lim P (Yn(t) = i I Yn(s) of 0; 0::; 8 ::; t), i = 1,2, ... ,71, 
í ú ç ç =

but interesting results concerning the time to extinction are also obtained. Nasell 
notes that, for each n, Tn is exponentially distributed with parameter ,Q1I(1) if the 
initial distribution of the process equals Qn, and then uses asymptotic expansions in 
order to estimate I/1Q1I(1). In the situation (AI), and only there, whether the process 
is started from our prescribed fixed value or from the qnasi··stationary distribution 
is of no importance for the asymptotic results, and indeed, in this case I/1Q1I(1) is 
asymptotically equivalent to the right hand side of (8.2). For a nice treatment of 
quasi-stationary distributions, see van Doorn (1991). 

We now "ketch a proof of (A2). By means of a simple coupling we show that, if the 
initial number mn of infectives stays constant. as n --7 00, then the epidemic process 
resembles a linear birth and death process at the beginning of the time development. 
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Define Z(t), t 2: 0, as a continuous time birth and death process with the following; 
transition table: 

from to at rate 
J j + 1 )..j, 
.J j - 1 I), 

Z(O) = m. It io well-known that the time to ext.inction T for Z satisfies P(T < 
00) = (r I A)rn if A > T The distribution of T can be given in a closed form (see e.g. 
Syski, 1992). Now define a bivariate proc('ss E õ ^ ú ? = Z,,) with transition intensities 

from to 
(i,y) (i+1,]+1) 

(i, j + 1) 
(i-1,]-1) 
(i,j - 1) 

at rate 
)"i(1I - i) In, 
Aj - Ai(n - iJ/n, 

and initial value (}'" (0) , Z,,(O)) = (TIl, TIl). It is clear that the marginal dist.ribu-
tions coincide with the distributions of õ ú I = and Z, respectively. :'I101('0\'el', õ ^ ú E í F = 'S 
Zn(t) for all t 2: O. Clearly the approximation breaks down as soon as the biwll'iate 
process leaves the diagonal. By invpst.igating the jump rates we sec that downward 
jumps from the diagonal are impossible while upward jumps are very rarc as long as 
the states (1:, i) have i 2 «n. This implies that thc two coordinat.es will st.ick together 
during the whole epidemic on that part of the sample space where the time to extinc-
tion of Zn is finite. On the other hand, if Zn explodes, then one can show that õ ^ ú =
reaches the eudernic level nf; (or rather the integer closest to this number) with high 
probability. 

To study the time to extinction given this latter event, we write 

Kn 

Tn = rln + LEn(k) + C T" 

k=] 

where An = inf{t 2: 0 : Y,,(t) = 0 or õ ú E í F = 2' ny}, Kn is the number of Å ç ã é ä E ú í É Å ä =
excursions from the endemic level, En (k) is the length of the kt.h completed excursion 
and Cn measures the time to reach the absorbing state counted from the time of 
the last entrance to the enclemic level. Of course, Kn = 0 and Cn = () if Y" never 
reaches the endemic level. By the strong; Ylarkov property, the variables E,,(k) are 
independent and identically distributed. Also, the number of completed excursions 
Kn has a simple geometric distribution with parameter (n, say. 

The following technical results are proved in Andersson and Djchiche (1£mS). First, 
the probability (n of absorption during an excursion satisfies 

( Ah - 1 -n\' 
S ú =--- e as n --+ 00, 

n 2y0,tY 
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with V = log(>'h) -1 +"(/>' > O. 

Also, the expected excursion lengths satisfy 

Finally, for any C > 0 we have 

in probability as n -+ 00. 

Using (S.5), we may write 

An 
- -+ 0 and 
enG 

S3 

(S.4) 

(S.5) 

Condition on the event that the approximating linear birth and death process ex-
plodes. Then the normed sum to the right tends to 1 in probability by a version of 
the law of large numbers, and it is easily checked that Kn/ E(K.,) tends to an exponen-
tially distributed random variable. Also, since the expectation of Tn is asymptotically 
equivalent to E(Bn(l))/(n, Equation (S.2) follows from (8.3) .'Lnd (S.4). 

Exercises 

8.1. Derive the differential equation (8.1) for the covariance matrix I:(t), t 2: 0, of 
the SIR epidemic with demography. Also derive the expression for t. 

8.2. Find the endemic level (x, y) for the normed SIRS epidemic (Xn(t), f-;'(t)) (see 
Exercise 5.3). 

8.3. SIRS epidemic model (continued). Suppose that the epidemic process is started 
at the endemic level (i.e. (Xn(O), Ñ ú E l F F = = (X,y)). Apply Theorem 5.3 to derive a 
central limit theorem for (,Yn(t) , Yn(t)) = y'n (Xn(t) - X, Ñ ú E í F = - y), the y'n-scaled 
centered process. 

8.4. Consider the SIS epidemic with>' ::; "( and mn/n -+ f.1 > 0 as n -+ 00. Give 
an approximation of the time until all the initial infectives have recovered from their 
first encounter with the disease, thus providing an elementary lower bound for Tn. 



Part II 

ESTIMATION 

Until now, these lecture notes have been concerned with modelling the spread of 
disease in a community. Such modelling can be interesting in its own right and certain 
characteristics of the models, such as the threshold limit theorem, can provide deeper 
insight into the spread of disease. However, another reason for modelling epidemics is 
to draw conclusions about particular diseases, for the guidance of health authorities. 
In the sections to follow, we therefore examine the equally important area of drawing 
inferences about model parameters. Inference in epidemics is non-standard in that 
the epidemic process is often only partly observed. The available data usually consists 
of knowledge of those infected during the course of the epidemic, and sometimes at 
what time points these individuals exhibited symptoms.This implies that statistical 
analysis has to be based on partial observation, which, together with the strong 
dependencies in epidemic models, studied in Part I, makes analysis of the simplest 
models quite complicated. 

In Chapter 9 we assume that the epidemic is observed completely, meaning that 
for each individual we know if she was infected or not, and if she was, the times of 
infection as well as removal (i.e. recovery and immunity). Such detailed data is in 
practice hard to collect, at least for large communities. Still, statistical methods for 
such data can be of interest as an indication of how much better estimates would be 
if such data had been available. If the answer turns out to be 'very much better' then 
efforts should be made to collect the necessary data. 

In Chapter 10 we treat more realistic types of partial data. We concentrate on the 
case where the final state is observed and briefly discuss the case where the removal 
times of infected individuals are also observed. The statistical methods treated in 
Chapters 9 and 10 focus on the standard SIR epidemic model; however, methods to 
extend the techniques to more realistic assumptions which take account of individ-
ual heterogeneities in the community and non-uniform mixing patterns, due to the 
presence of social networks, are also discussed. When allowing for different hetero-
geneities, statistical analysis quickly becomes cumbersome, particularly in the realistic 
case where the epidemic is only partially observed. A different approach to statistical 
analysis is then to make use of Markov Chain Monte Carlo methods. This technique, 
which has yet to be fully developed for infectious disease data, 'Is presented in Chapter 
11. 

Chapter 12 focuses on the estimation of parameters most relevant for health au-
thorities. More important than knowing the values of certain model parameters is 
their interpretation in terms of how to avoid future epidemics by the introduction of 
preventive measures such as vaccination. More specifically, we focus on estimating 



the critical vaccination coverage, that is, the proportion of the susceptible population 
which it is necessary to vaccinate in order to prevent future outbreaks. 

In Part I, we observed that if there are only few initially infectious individuals 
the epidemic may not take off. When drawing inferences, we can only hope for 
consistency in our estimation if we observe a major outbreak. Thus, one has to 
condition on the occurrence of a major outbreak. Rather than doing this, we take 
the easy way out and assume that the proportion of initially infectious individuals 
is positive (p > 0). In the first part of the text it was assumed that no individuals 
were initially immune. In reality this is rarely true: quite often there are immune 
individuals, possibly due to a previous out.break of the disease. The same techniques 
and similar results also apply to the case with initially immune individuals, by a slight 
transformation of parameters. In Part II of the text we retain the assumption of no 
initially immune individuals. Conclusions about the parameters will be misleading 
if this assumption does not hold. In Exercises 9.4 and 12.2 we give hints on how 
to modify estimation in the case of a known positive proportion of initially immune 
individuals. Another problem not discussed in the text is that of model choice; we are 
not comparing different models statistically nor checking if data is consistent with the 
general model. In the present notes, paramet.er estimates are derived on the implicit 
assumption that the model is true. 

Vve concentrate on presenting ideas and techniques for estimation, rather than 
actually applying the methods to real data. The main references for statistical meth-
ods for epidemics are Becker (1989) and Anderson and May (1991), with the latter 
excluding uncertainty considerations. The earlier monograph on modelling by Bailey 
(1975) also treats statistical inference. See also the recent survey paper by Becker 
and Britton (1999). 



9 Complete observation of the epidemic process 

In this chapter we assume that the standard SIR epidemic process En,m()l, I) is ob-
served completely. By complete observation is meant that the infection times Ti and 
removal times Pi (hence also the length of the infectious period Ii = Pi - Ti) of all 
infected individuals are observed; for individuals who did not become infected we 
define Ti = 00 and Ii = 0 for formulas to be consistent. From l;he data it is obviously 
possible to deduce how many individuals are susceptible, infectious (and removed) 
for each time t, implying that (X, Y) = {(X(t), Y(t)); t 2' D} as well as the final size 
Z = n - X (00) are observed. Based on the observed data we want to draw infer-
ences on the transmission parameter A and the distribution of the infectious period I. 
We do this by means of Maximum Likelihood (ML) theory. First, we have to make 
the meaning of 'likelihood' clear for such epidemic processes. Hence, in Section 9.1 
we derive the log-likelihood for a vector of counting processes, and also state some 
properties of martingales which will turn out useful in the statistical analysis. 

9.1 Martingales and log-likelihoods of counting processes 

An excellent reference to statistical methods for counting process data is Andersen et 
ai. (1993), where both theory and many examples are given. In the present section 
we state some results and motivate them heuristically. Consider a vector of counting 
processes N = (N), ... ,Nk ), where each component Ni(t) counts the number of times 
a specific event has occurred up to time t. Assume that the probability that such 
an event occurs in (t, t + h] given the history of t.he whole vector process up until t, 
denoted H t , satisfies 

P(Ni(t + h) - N;(t) = 11 Ht ) 

P(N(t + h) - N(t) = 0 I H t ) 

h>..;(t) + o(h), ,: = 1, ... ,k, 

1- h LA;(t) +o(h). (9.1) 

In the equations above A;(t), denoted intensity functions, are non-negat.ive functions 
which may depend on the history of the process up until time t. Formally this 
is written as A;(t) E Ht and (Ht)t?o is called a filtration lif O'-fields. To go into 
mathematical details is beyond the scope of these lecture notes - often, it suffices to 
understand t.heir meaning heuristically. The equations above imply that, in a short 
time interval, only one of the k different events can occur (i.e. the corresponding 
counting process increases by 1). Notice the similarities between (9.1) and the jump 
rates (5.1) of Chapter 5. The intensities above are more general in that they may 
also depend on the process prior to t (i.e. the process is not necessarily Markovian), 
and less general in that only one type of jump (increase by 1) can occur. 

What is the log-likelihood of the observations on {N(t) 0 ::; t ::; u)} for this 
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process? We derive this heuristically by dividing (0, u) into small increments .6.t of 
length h and working out the probability of observing what happens in the increment, 
conditional on the history prior to the increment. Let .6. t = [t, t+ h) and let .6.Ni (t) = 
Ni(t + h) ú =Ni(t) be the number of i-events that occur in this interval. Then the 
probability of our observations can be written as 

The two factors within the large brackets above simply pick out which of the prob-
abilities to use, depending on what was observed in .6.t . As the increment length h 
becomes smaller, the number of increments increases and all but the increments con-
taining events appear in the second factor above. For small h this factor is equivalent 
to exp E ú Ü =L, Ai(t)). The expression above decreases (except if no events have oc-
curred) because of the h's appearing in the inner product. This is not surprising: the 
probability of observing the events exactly at some given time points is O! However, 
if we divide the expression above by h to a power equal to the observed number of 
jumps, and let h tend to 0, it can be shown that the logarithm of the expression above 
converges to 

l!u(N(t); 0 ú =t ú =u) = I: l u E ä l Ö x ^ I E í ú =)]dNi(t) ú = ^ I E í ú =)dt) , (9.2) 
, 

and this is the log-likelihood of the observed process, with Ai E í ú F = denoting the inten-
sity just before t. In the expression above dNi(t) is 1 at times t when the counting 
process increases, and 0 otherwise, so the first integral is actually a sum. 

The log-likelihood is used for drawing inferences about parameter(s) e of the inten-
sity functions. From now on, we therefore write \(e; í ú F = and £u(e) for the intensities 
and the log-likelihood respectively. Below a one dimensional parameter is considered, 
otherwise partial derivatives should be used. The true, unknown parameter value is 
denoted by eo. Further, all derivatives will be with respect to the parameter and not 
time. If we have observed the counting process up until u, the ML-estimator iJu is 
the solution e which maximizes £u(e). We find the maximum by differentiating the 
log-likelihood: 

f > ú =(e) 

(9.3) 

The process above, viewed as a function of u is often called the score process in 
statistical literature. The ML-estimator iJ is the solution of the equation ¡ ú E _ F = = o. 



9.1 Martingales and log-likelihoods of counting processes 89 

For the true parameter 00 , i.e. using the true intensities, the integration increments 
dN;(t) - A;(Oo,t-)dt have zero mean (cf. Equation 9.1). Such zero-mean increments 
are closely connected to martingales, a notion we now describe. 

A process M = {Mu; u ú =O} is said to be a martingale (with respect to the history 
Ht ) if it satisfies two conditions: E(IMui) < 00 for all u, and E(Mu IHt ) = Mt for 
u ú = t. The theory of martingales is rich and profound; a rigorous presentation is 
given in Andersen et al. (1993), Chapter II, and a less meethematical description 
with a view to applications in epidemics is to be found in Becker (1989), Chapter 7. 
We now state some properties of martingales relevant for our application (here we 
only consider I-dimensional martingales, but many results can be extended to the 
multivariate case). The single most important property of a martingale M is the 
second defining property, namely that its expected future value equals its present 
value. In our case the martingale will be fu(Oo) which is 0 at u = 0, implying that 
E(fu(Oo)) = 0 for all u. Further, a linear combination aM + bM of martingales is 
a martingale. If a bounded predictable process, i.e. a bound'od process X for which 
X(t) is determined by H t - (the history up to but not including t), is integrated with 
respect to a martingale M, then the resulting process 1I1(t) = f; X (u)dl'vl(u) is a 
martingale. 

From the properties stated above it follows that the score ::Jrocess {fu(Oo); u ú =O}, 
evaluated at the true parameter value 00 , is a martingale. For many martingales it is 
possible to prove central limit theorems as some quantity tends to infinity. In addition 
to the mean we therefore need to derive the variance of a martingale. Consider 
a martingale of the form Mu = fou f(t)(dN(t) - ).,(t-)dt), where N(t) is a counting 
process with intensity ).,(t) and f is a predictable process (as in our case above). Define 
the so-called opt.ional and predictable variation processes by [MJu = fou j2(t)dN(t) 
and (M)u = fou j2(t).,(t-)dt respectively. The following lemma explains why they 
are called variation processes. 

Lemma 9.1 Suppose the martingale M defined above has jlnite second order mo-
ments. Then Var(Mu) = E[(M)J = E[[MJuJ. 

Proof. The second equality is immediate since [MJu - (M)u = g ú E u F = j2(t)(dN(t) -
).,(t- )dt) is itself a martingale, so its expectation is O. The first equality is derived 
as follows. The defining integral of Mu is the limit of the sum ú S K I = f(t) (!':.N(t) -
).,(t)h) using the same notation as before. The variance of such a sum is the sum of 
covariances. Each such covariance term is equal to the expectation of the product 
since 

E[J(t)(!':.N(t) - A(t)h)J E[E[J(t)(!':.N(t) - .\(t)h)IHtll 
E[J(t)E[!':.N(t) - A(t)hIHtll 
O. 
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This follows because the increments have mean O. Consider a covariance term with 
disjoint time intervals 6 s and 6 t where s + 12 < t. Then 

E[f(s)(6N(s) - ).,(s)h).f(t)(6N(t) - ).,(t)h)] 

= E[E[J(s)(6N(s) - ).,(s)h).f(t)(6N(t) - ).,(t)h)IH'+hll 
= E[f(s)(6N(s) - ).,(s)h)E[f(t)(6N(t) - ).,(t)h)IHS+hll 
= o. 

The covariance bctween tcrms of disjoint time intervals is hence O. :"Jaw the diagonal 
terms, i.e. the variance terms, are 

Var[f(t)(6N(t)-).,(t)h)] = E[f2(t)(6N(t)-).,(t)h)2] = E[f2(t)E[(6N(t)-).,(t)h?IHtlJ. 

The factor inside the inner expedation takes the value (-)..(t)h)2 if there is no jump in 
the interval and the value (1 - ).,(t)h)2 ;::::0 1 if there is a jump, and the latter happens 
with probability ).,(t)h. Keglecting terms of order o(h) we thus have E[(6N(t) -
).,(t)h)2IHt_] = ).,(t)h and consequently the variance terrn equals E[.[2(t).,(t)h]. Thl' 
variance of the sum hence equals the sum of variances: 

Var[Ml1 ] = L E[F(t).,(t)h + o(h)] = E[L .f2(t).,(t)h + o(h)]. 

Taking smaller and smaller intervals shows that this converges to E[Jou f2(t).,(t- )dt] 
as stated. • 

Using the same technique one can prove the following lemma stating that martin-
gales from counting processes with no simultaneous jumps are uncorrelated. 

Lemma 9.2 Consider' two martingales !Ill and j\12 defined by 

j .u .fl(t)(dN1(t) _ ).,1 (t-)dt), 
o l'U h(t)(dN2 (t) - ).,2(t- )dt), 

where N1 and N2 are r:ounting processes without simultaneous jumps having intensities 
).,1 and ).,2 respectively and J1 and h are predictable processes. Then the covar"lance 
Junction satisfies COV(M1(U), M2 (t)) = 0 Jar all 71, t 2': o. 

Proof. The lemma is proven using methods similar to those in the proof of Lemma 
9.l. Hints are given in Exercise 9.l. • 

We conclude this section by stating a martingale central limit theorem due to 
Rebolledo (1980) (see also Andersen et aZ., 1993, p 83). For this we study a sequence 
of martingales },1(n) , indexed by n. Let Mjn) be a martingale containing all jumps 
of M(n) larger than E in absolute value, and let the function m('U) be a continuous 
increasing deterministic function. 
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Theorem 9.3 Assume that x ^ g E å F z I I ú ã E ì F = or E j E å F F ì ú ã E ì F = and that for each f > 
0, j í E å y ì F ú l = for all u. Then Ivf(n) '* 1'11(00), where M(oo) is a continuous Gaussian 
martingale with (M(oo»)" = [M(oo)]" = m(u). In particular Af(oo)(t) - lvf(oo)(s) zs 
Gaussian with mean 0 and variance m(t) - m(s) for t ;::: s. 

'vVe omit the proof of the theorem. In the Markovian case it can be proven using 
methods similar to those presented in Chapter 5. 

9.2 ML-estimation for the standard SIR epidemic 

Assume now that we observe En,mP,,1) up to some time u. that is we observe all 
infection times Ti and removal times Pi that. have occurred up until u. Define Nl(t) = 
n - X (tl, a counting process for the number of infections that have occurred in (0, t], 
and N2 (t) = n + m - (X(t) + Y(t)) a counting process for t.he number of removals 
in (0, t] (remember that X(O) = nand Y(O) = m = /Ln). The first counting process 
has intensity (A/n)X(t- )Y(t-). The counting process N2 bas a more complicated 
intensity. If F denotes the distribution of the infectious period 1 and f á í ú = density 
function then the intensity function at t is 'Lj (t - T,) / (1 - F( t - Ti)), where the sum 
extends over individuals which are infectious at t-. Applying results of the previous 
section and manipulating the integrals for the counting proce:3S N2 it follows that the 
log-likelihood is given by 

�u(A,F) = l u (log[(A/n)X(t-)Y(t-)]dN\(t) - (Afn)X(t-)Y(t-)dt) 

+ L 10g(1- F(u - T,)) + L 10gfi:Pi - T,) (9.4) 

To estimate A we differentiate the log-likelihood with respect to A 

where, as before, X(t) = X(t)/n. (Whenever integration is with respect to Lebesgue's 
measure (dt), as on the far right above, one may replace the argument 't-' by 't', this 
is done in what follows.) Solving the likelihood equation -i>.�u(A, F) = 0 thus gives 
the IvIL-estimate 

A Nl(u) 
A = foU X(t)Y(t)dt' 

(9.5) 

Estimating properties of the infectious period can be done parametrically or non-
parametrically. In particular, if the epidemic is observed to the end, u = T = 
inf{t; Y(t) = O}, then the first sum in (9.4) is empty and inference is based on the 
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observed lengths of the infectious periods Ii among individuals who were infected. 
For example, ú = = E[I] is simply estimated by the observed mean 1. 

For the rest of this section we treat the Markovian version of the standard SIR 
model, i.e. assuming that the length of the infectious period is exponentially dis-
tributed with mean length 1/,,(. The reason for doing this is that convergence results 
can be derived from the theory presented in Chapter 5, but most results are true for 
the general case. For the Markovian case the intensity for N2(t) is simply I'Y(t) (each 
infectious individual is removed at constant rate 1'). The derivative of the likelihood 
with respect to I' then becomes 

8 l u 1 N (u) l u 
-8 fuCA, 1') = - (dN2(t) - I'Y(t)dt) = _2_ - Y(t)dt. 
I' 0 I' I' 0 

Consequently, the ML estimator is 

A N2(U) 
I' = IoU Y(t)dt' 

(9.6) 

A more natural parameter to estimate is 1/1', the expected length of the infectious pe-
riod, which is of course estimated by the inverse of the estimator above. In particular, 
if the epidemic is observed to the the end u = T the estimator is loT Y(t)dt/N2(T), 
and this is simply the aggregated length of all infectious periods divided by the num-
ber who were removed. The estimator is hence simply the arithmetic mean of the 
observed infectious periods. 

We will now prove that the ML-estimators are asymptotically normal. First we 
apply the martingale central limit theorem to the score processes. 

Lemma 9.4 Consider the Markovian version of the standard SIR epidemic with 
initial values x(n) (0) = nand yen) (0) = p,n. Define the normed score processes 
sin)(u) = n-1/2;>..£Iu(>\,I') and p ú å F E ì F = = n-1/2 i:;fu(A,I'), evduated at the true pa-
rameter values (AO, 1'0). Then 

and Sen) =? S 
2 2, 

where Sl and S2 are Gaussian martingales. The covariance function of Sl and 82, 
denoted V1 and V2 respectively, are defined through the deterministic limiting functions 
x(t) and y(t) of Section 5.5, and are given by 

V1(U) >.021u Aox(t)y(t)dt = A02 (1 - x(u)) 

V2(U) 1'021u I'oy(t)dt = 1'02 (1 + p,- x(u) - y(u))! 

respectively. 
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Proof. The result follows immediately from the martingale central limit theorem 
(Theorem 9.3). The first assumption of the theorem was shown in Section 5.5, and 
since the size of all jumps are n- I / 2 for the normed process, there will be no jumps 
larger than t for n large enough. • 

We are now able to prove the main result of this chapter, a result originally given 
by Rida (1991). 

Theorem 9.5 The ML-estimators ú = and i are asymptotically Gaussian with asymp-
totic means AO and ,0 (the true parameter values) respectively. The asymptotic vari-
ance of ú = is l/nvI (u) and for i the variance is l/nv2(u). Consistent estimates of the 
standard errors of ú = and the more natural parameter ,::"1 = l/i (the average length 
of the infectious period) are 

s.e. E ú F = ).,/vNI(u) and 

s.e. (,::"1) ,::"I/VN2(u). 

For the case where the epidemic is observed to its end (u = T) the deterministic 
integrals appearing in the variance functions VI and V2 may be replaced by T - J-l and 
T respectively (T was defined in Chapter 4). Similarly, the square root expressions for 
the standard errors then becomes Z and Z + J-ln respectively. 

Proof. We prove the statement for ú I = the proof for i being similar. The estimator ú =
is the solution to the likelihood equation l>.£u(A, ,) = O. Multiplying the likelihood 
equation by Ao/ vn gives 

0= In (N1(U) -lu ú u E í F v E í F Ç í F = = Aosin) (11) + In(AO -).,) .lau X(t)Y(t)dt. 

Rearranging the formula yields 

(_) S(n)(u) 
vn A - Ao = Aol IoU ú E í F v E í F Ç E = (9.7) 

According to Lemma 9.4 sin) (11) converges to a Gaussian random variable with mean 
o and variance Vl(11). Further, by Theorem 5.2 AOI IoU X(t)Y(t)dt converges in proba-
bility to IoU x(t)y(t)dt = VI(11). Hence, by Slutsky's theorem it follows that ú =is asymp-
totically normal with prescribed mean and variance. That g ú ç ç =Aox(t)y(t)dt = T - J-l 
is easily shown from the deterministic equations in SectionJ.5. Finally, h\ (11) also 
converges in probability to IoU Aox(t)y(t)dt using Theorem 5.2, from which it follows 
that the standard error is consistent. • 

Of course, the basic reproduction number eo = Ao/,o is estimated by {j = ú L á I =
where)" and i' are defined by (9.5) and (9.6) respectively. This estimator is also 
asymptotically Gaussian as the following corollary shows. 
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Corollary 9.6 The estimator iJ = )..h is asymptotically Gaussian with mean eo and 
variance (Vjl (u) + É ú s O N =(u)) I (w'(5)· If the epidemic is observed to its end ri. e. u = 

T) then a consistent standard error is given by s.e.(O) = OJ(Z-1 + (Z + tL)-I) In. 

Proo/. The proof consists of two steps. First we argue that).. and ,-yare asymptotically 
independent. The second part, left for Exercise 9.2, consists of applying the o-method, 
i.e. expanding).. and ;;( around their true values Ao and 1'0, by Taylor's theorem, and 
using their independence. To show that).. and ;;( are asymptotically independent we 
note that, by definition Vii (i- 1 - 1'01) = p ú å F =(u) I JVz (u) and a similar expression for 

Vii (J.. - AO) is given in Equation (9.7). The denominators in the two expressions 

converge in probability to deterministic limits, and sin) and p ú å F = are uncorrelated 
due to Lemma 9.2 which proves asymptotic independence. • 

Statistical analysis for various extensions of the standard SIR model, assuming 
complete observation, has not received much attention in the literature. One reason 
for this is that the epidemic process is rarely observed in such detail. Another reason is 
that for many models (e.g. most network models) stochastic properties of the epidemic 
process are unknown, only properties of the final state having been derived. Two 
exceptions are Rhodes et al. (1996) and Britton (1998a). The former considers a 
more detailed model for a homogeneous community and assumes even more detailed 
data; information about actual contacts is known. For such data Rhodes et al. (1996) 
derive estimation procedures for various parameters, including the probability that 
a contact leads to infection. Britton (1998a) derives estimation procedures based 
on complete data for the Markovian version of the multitype epidemic model (sec 
Chapter 6). It is shown that the infectivity of a given type can only be estimated 
consistently if the corresponding susceptibility differs from all other susceptibilities. 

Exercises 

9.1. Prove Lemma 9.2. (Hint: Use the same technique as in the proof of Lemma 9.1-
i.e. to divide the interval into small disjoint intervals of length h and show that the 
conditional expectation of each term is 0, the diagonal terms as weill To be precise 
the terms are of order o(h2).) 

9.2. Prove the remaining part of Corollary 9.6. (Hint: Apply the o-method together 
with the results of Theorem 9.5 and independence to derive the asymptotic variance 
of the estimator iJ.) 

9.3. Table 9.1 on the next two pages describes an outbreak of smallpox in a Nigerian 
village (taken from Table 6.1 p 112-113, Becker, 1989). For each day the number of 
susceptibles and infectives are given as well as the number of infections that occurred 
during that day. (Note that the number of infectives does not increase as soon as 
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an infection occurs. The reason for this is that individuals are latent for some time 
before turning susceptible. This does not affect estimates.; Assume this to be an 
outbreak from the Markovian version of En,mCA, I). 

a) Estimate the infection parameter A, the mean length of the infectious period A(-l 

and the basic reproduction number () = )..h. 
b) Give standard errors for the estimates. 

9.4. Suppose that. instead of having X(O) = n we have X(O) = sn, meaning that. 
only a proportion s of those not init.ially infectious are susceptible and the remaining 
are immune (if the number of removed is denoted Z(t) we hence have Z(O) = (1- s)n 
under the present assumption). What is the effect on the ML-estimator ,\, and its 
variance? Answer the question by considering two communities having the same 
numbers of infectives and susceptibles initially and all through the epidemic, only one 
community having no initially immune and the other community having, say, half as 
many initially immune as initially susceptible. (Hint: Note that the two communities 
have different n = X(O) + Z(O)). 
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Table 9.1. The spread of smallpox in a Nigerian village (continued) 
Number Number Number Number Number Number 

Time infectious suscept. infected Time infectious suscept. infected 
t I(t) S(t) C(t) t I(t) S(t) C(t) 
0 1 119 1 22 1 111 1 
1 1 118 0 23 2 110 0 
2 1 118 0 24 2 110 0 , 

3 1 118 0 25 2 110 1 
4 1 118 0 26 5 109 0 
5 1 118 0 27 6 109 2 
6 1 118 0 28 5 107 0 
7 1 118 1 29 5 107 2 
8 1 117 0 30 4 105 0 
9 1 117 1 31 5 105 0 

10 1 116 0 32 5 105 0 
11 1 116 0 33 2 105 0 
12 1 116 3 34 1 105 1 
13 1 113 1 35 1 104 0 
14 1 112 0 36 2 104 0 
15 1 112 0 37 2 104 1 

16 1 112 0 38 1 103 1 
17 1 112 1 39 2 102 0 
18 1 111 0 40 2 102 0 
19 1 111 0 41 4 102 0 
20 1 111 0 42 4 102 2 
21 1 111 0 43 5 100 1 
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Number Number Number Number Number Number 
Time infectious suscept. infected Time infectious susceptib. infected 

t I(t) S(t) C(t) t I(t) S(t) C(t) 
44 5 99 1 64 5 90 0 
45 5 98 1 65 4 90 0 
46 4 97 0 66 3 90 0 
47 4 97 2 67 5 90 0 
48 3 95 1 68 3 90 0 
49 3 94 0 69 2 90 0 
50 1 94 0 70 2 90 0 
51 2 94 0 71 2 90 0 
52 3 94 0 72 3 90 0 
53 3 94 2 73 3 90 0 
54 3 92 0 74 1 90 0 
55 2 92 0 75 1 90 0 
56 4 92 0 76 1 90 0 
57 5 92 0 77 2 90 0 
58 5 92 1 78 2 90 0 
59 5 91 0 79 1 90 0 
60 5 91 0 80 1 90 0 
61 7 91 0 81 1 90 0 
62 8 91 0 82 1 90 0 
63 6 91 1 83 1 90 0 



10 Estimation in partially observed epidemics 

In the previous chapter, statistical analysis was based on what we called complete 
observation ofthe epidemic process; both the times of infection and removal (recovery) 
for all infected individuals were observed. In real life such detailed data is rarely 
available. In the present chapter we study estimation procedures for less detailed 
partial data. The likelihood for partial data is usually cumbersome to work with, 
being a sum or integral oyer all complete data set.s resulting in the observed partial 
data. Other estimation techniques can turn out to be much simpler. Below we present. 
two general techniques which have been successful in several epidemic applications: 
martingale methods and t.he EM-algorithm. 

The two techniques are applied to a specific estimation problem. First, we llS!' 

martingale methods to derive an estimator for the basic reproduct.ion number in the 
standard SIR epidemic, assuming that only the initial and final states are observed. 
Second, we consider a discrete time version of t.he models presented previously, in-
troducing chain-binomial models, which are interesting in their own right. Assuming 
t.hat t.he chains are observed we make usc of the K\'1-algorithm to deduce an esti-
mator of t.he transmission parameter. It is worth pointing out that pure likelihood 
methods can be applied in several cases, even when only partial data is available. 
If, for example, several small sub-populations (e.g. households) are observed, then 
l'vrL-estimation is often possible from final size data. Estimation then consists of tra-
ditional :\1L-theory with the additional ingredient of potential numerical problems 
due to the complicated form of the likelihood (ef. the exact li{clihood in Section 2.4). 
Addy et al. (1991) present estimation procedures for final size data of sub-populations, 
allowing for a heterogeneous community and also for transmission from outside the 
sub-population. The ideas extend the early work by Longini and Koopman (1982) 
who treat a homogeneous community and a special form of transmission dynamics. 

10.1 Estimation based on martingale methods 

The standard SIR epidemic E",m(\ 1) was defined in Section 2.1. Suppose that we 
have collected data from such an epidemic and that data consist of knowing how many 
individuals have been infected during the course of the epidemic, besides knowing 
the initial state (i.e. the number of initially susceptible and infectious individuals 
respectively). In many cases the initial state may not be known. The initial number of 
infectives is usually small thus not causing much uncertainty; the substantial problem 
lies in knowing how many individuals are initially susceptible to the disease. Quite 
often some individuals are immune even before the disease is introduced, perhaps 
due to an earlier outbreak of the same or a similar diseaSE. Then the number of 
susceptibles has to be estimated prior to the outbreak, using traditional statistical 
methods. Here we assume this number to be known thus neglecting such uncertainty. 
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Our data consists of n = X(O), pn = Y(O) (the initial state) and the final number 
infected Z = n - X(T), and implicitly knowing that Y(T) = 0 since there are are 
no infectious individuals at the end of the epidemic. As observed in Section 2.4 the 
exact distribution of the final size of the epidemic has a numerically complicated form, 
thus not enabling much help in estimation when n is large. One way to estimate is 
of course to use the central limit theorem stating that Z is approximately normally 
distributed and equating the mean to the observed value Z. Here we take a different 
approach based on martingale methods, a method applicable in many other cases. 

From Chapter 9 we know that 

1U f(t) (dN1(t) - AoX(t)Y(t)dt) -1u g(t) (dN2(t) - I'oY(t)dt) 

is a martingale for any choice of predictable (left-continuous) processes f = {J(t); t ;::: 
O} and 9 = {g(t); t ;::: O}. The ML-estimator ú = was obtained by equating the mar-
tingale to 0 for the choice f(t) = l/A and g(t) = 0, and l' from f(t) = 0 and 
g(t) = 1/1'. This method can no longer be used in the case of final size data: for 
example Iou X(t)Y(t)dt appearing in ú = is not observed. However, the same idea of 
equating a martingale to its mean, a special form of the method of moments, can be 
adopted by choosing f and 9 cleverly so that the resulting martingale only depends 
on observed quantities. We want to choose f and 9 such that the 'dt' terms cancel 
out. This happens if f(t) = I'O/(AoX(t-)) (note that f(t) is left-continuous) and 
g(t) = 1. Let M(n) denote the resulting zero-mean martingale divided by fo and let 
(}o = Ao/I'o be the basic reproduction number. That is, 

1u 
1 1u ..fi1,M(n)(u) = ( ) (dNdt) - AoX(t)Y(t)dt) - (dN2(t) - I'oY(t)dt) 

o (}oX t- 0 

1 1" 1 1" -(} -=;--( )dN1(t) - dN2(t) 
o 0 X t- 0 

ú =E ú H =n ú =1 + ... + n _ (Nl1(U) -1)) - N2(u). (10.1) 

The last equality is true since X(t) = n - Nl (t). For u = T, the end of the epidemic, 
its value is determined by the final size data since Nl (T) = Z and N2 (T) = pn + Z. 
Solving the equation M(n) (T) = 0 leads to the estimator 

(10.2) 

To see that the estimator is reasonable, we look at its large population approximation 
using the approximation 1/n+1/(n-I)+· .. + l/(n- (Z -1)) ú =-log(l- Z) implying 
that 

(j ú =-log(l - Z)/(Z + p,). 
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From the law of large numbers derived in Section 4.3 it is seen that the estimator 
agrees with the large population limit. The large population limit for Z + p" denoted 
by 7, is defined in (4.1), where i = E(I) corresponds to lira (and hence Ai to (}o) for 
the Markovian case treated here. 

A central limit theorem can be derived using methods similar to those in the case 
of complete data treated in Section 9.2. From the martingale central limit theorem 
(Theorem 9.3) we have the following corollary: 

Corollary 10.1 The mar·tingale M(n) defined by (10.1) satisfies M(n) =? M. The 
limiting process !vI is a continuous Gaussian martingale with covariance function 

v(u) = ;5 Ctu) ú N F = H E N H g J ä ú ñ E ì F ú Wó E ì F F I =
where x(u) and y(u) are deterministic functions defined in Section 5.5. The mar-
tingale observed at its end, M(n) (T) = M(n) (00), converges to a Gaussian random 
variable with mean 0 and variance v(oo) = (}o2 ((1 + J-l ú =7)-1 ú =1) + 7. 

Proof. The optional variation process [M(n)] has the following form 

1 jU 1 l1u 
-(}2 ú E =ú F Ç k ä E í F =+ ú = dN2(t) 
nooXt no 

1( 1 1) --
n(}5 1 + (1 ú =l/nF + ... + (X(u) + l/n)2 + (1 + J-l ú =X(u) ú =Y(u)). 

(The fact the Nl and N2 jump at distinct time-points makes the two martingales 
defined from Nl and N2 independent, cf. Lemma 9.2, so the variation process of their 
difference is the sum of the two variation processes.) From Chapter 5 we know that 
X(u) and Y(u) respectively converge to x(u) and y(u) of Section 5.5 almost surely, 
uniformly on bounded intervals. Because an integral is defined as the limit of a sum 
with smaller and smaller time increments it then follows that [M(n)]u converges to 
v( u). Because the jumps of M(n) are of size 1/ fo we can then apply Theorem 9.3 to 
conclude weak convergence of the martingale. A formal proof of the final statement 
is technical and not given here (see Rida, 1991). The variance is as expected since 
x( 00) = 1 + J-l ú =7 and y( 00) = 0, the asymptotic proportions of susceptibles and 
infectives respectively at the end of the epidemic. • 

A The corollary above immediately induces a central limit theorem for the estimator 

B which we state in the following corollary (see also Rida, 1991). 

Corollary 10.2 The estimator B defined in (10.2) is asymptotically normally dis-
tributed with mean (}o and asymptotic variance 
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where T is defined in (4.1) with 00 replacing AL A consistent standard error for the 
estimator is given by 

ú = 1 (2' ) 1/2 
s.e.(O) = foe ) --- + 02(2 + p) n Z+p 1-Z 

Proof. From the definition of 0 we have 

Rearranging the formula gives 0il l - 0- 1 = foM(n) (T)I JOT X(t)-ldNl(t). As noted 
earlier, the integral equals n (lin + ... + I/(n - Z + 1)). In Section 4.2 it was shown 
that Z In converges in probability to T - p. Hence it follows that 

1 1 - + ... + -+ -log(l + p - T) 
n n-Z+1 

in probability, and the right hand side is equal to OOT due to the definition of T. 

Together with Corollary 10.1, stating that M(n)(T) is ú ë ó ã é í ç í á Å ~ ä ä ó =normal we can 

apply Slutsky's theorem to conclude that fo(Oil l - 0-1 ) converges to a Gaussian 
random variable with mean 0 and variance (OOT)-2 (Oil2 ((1 + p- Ttl - 1) + T). Fi-
nally, apply the 8-method, i.e. derive the Taylor É ñ é ~ å ë á ú å = of the É ë ú á ã ~ í ç ê = around 

the true parameter, to conclude that asymptotically Var(O) = OtVar(O-l). • 

Using martingale methods we have shown how to derive an estimator for 0 based 
on observing only the final size. If the complete data were available a better estimator 
is of course 0 = Vi of Chapter 9, which uses more information. When only the final 
size is observed we cannot estimate the two parameters separately. This is quite 
natural: one random quantity (the final size) enables estimation of one parameter, 
and since we have no knowledge of the time evolution of the process, we should not 
expect any information about the length of the infectious period. 

Sometimes information about the time of diagnosis of infected individuals is also 
available. The time of diagnosis is approximately equal to the 'removal time' because 
social activity is often reduced when symptoms become obvious, and so is the in-
fectiousness. This motivates the study by Becker and Hasofer (1997), which derives 
estimation procedures for data on removal times, assuming the Markovian version 
of the standard SIR epidemic. Besides the martingale considered above, they derive 
another estimating equation from the martingale M(t) = X(t) (1 +0 In)n+l'n-X(t)-Y(t). 
This enables them to estimate A and I separately as in the case of complete data. 

Britton (199Sa) has constructed estimators, using martingale methods similar 
to those of the present section, for final size data of the multitype SIR model of 
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Chapter 6, assuming proportionate mixing. Susceptibility parameters are shown to 
be asymptotically Gaussian whereas infectivities and the bastc reproduction number 
cannot be estimated consistently. An explanation is that the dimension of the data is 
lower than the number of parameters, and by observing those who were infected, not 
much can be said about those who caused the disease to spread further, i.e. about 
the infectivities. 

10.2 Estimat.ion based on the EM-algorithm 

The EM-algorithm was first named by Dempster, Laird and Rubin (1977), but the 
method dates back even earlier. It is a method aiming at simplifying likelihood in-
ference by introducing more detailed hypothetical data. First, we explain the general 
method very briefly, and then give an application to epidemic inference. 

Let x denote the observed data and suppose we wish to estimate some parameter(s) 
e, but that the log-likelihood £(e; xl is cumbersome to work with. Suppose further 
that estimation would be much simpler, or even trivial, if some hypothetical data y. 
containing x, were available. The EM-algorithm then suggests that one 'pretend' this 
more detailed data is available and estimate the parameter(3). Then one compules 
the expected value of the hypothetical data given the observed data. This algorit hm 
is repeated until the change in value of the parameter estimate is negligible. Csing 
mathematical notation one should start with an initial parameter choice B(Cl). Thf'JI 
perform the E(xpectation)-step and M(aximization)-step reppatedly, when' tlIP E-
and M-steps respectively consist of computing 

E-step 

M-step 
f(e; x, É E à ú > F F = = E(£(e; nix; eC]-l)) 
e(;J = argmaxof(e; x, É E z ú g g ä ’ =

This algorithm is iterated until the difference between eel) and e()+I) is lIegligibll'. 
The resulting value is the parameter estimate. The hard part of the E,\I-algUlit hm 
lies in inventing suitable imaginary data. How Lhis is done varies from application to 
application. 

V/e now apply this method to an estimation problem in epidcmics. when' we 
consider a discrete time epidemic model within the class of chain-binomial JlIo<i('ls. 
For each integer k, let X k and Yk respectively denote the nu::nber of slIsceptihk Clnd 
infectious individuals at time, or generation, k. The name chClin-binomial ("OIll('S froltl 
the way susceptible individuals are reduced (i.e. become infected): gin'll -\k = Tk 

and Yk = Yk the number of susceptible individuals at k + 1, Ski I, is binollJiall)' 
distributed with paramr.ters .7:k and qYk This mealls that a ollsceptibh' iwli,'idual ill 
generation k remains susceptible at k + 1 if she escapes infection from each of the 
Yk infectious individuals at k, and these non-infective É î É f ä ú p = are á å Ç É é E D å Ç E ú ä ä í = and 
occur with probability q. Here we concentrate on estimation of (} based on the data 
(xJ, YJ), .. . ,(xe, Ye); we do not have to consider how long individuals are in the latent 
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state and infectious before becoming removed. The simplest and most studied model 
is known as the discrete time Reed-Frost model where it is assumed that the infected 
individuals become infectious immediately and are removed in the next generation 
implying that Yk+l = Xk - Xk+l' All we assume here is that infections occur according 
to the chain-binomial model. We therefore introduce the notation ik + 1 = Xk - Xk+l to 
denote the number of individuals that become infected in generation k + 1, contained 
in the data. 

The likelihood with respect to q of the data is 

and the log-likelihood is given by 

r-l 

£(qj {Xb Yk}) = C + L (xk+llog(qYk) + ik+llog(1 - qYk)) . 

k=1 

To maximize this expression is numerically complicated if the number of infectious 
individuals is high in some generations. The reason is that the derivative of the second 
term above then becomes messy. Suppose that rather than observing (Xk+l, ik+l) we 
observed Xk+l,O, Xk+l,I, ... , Xk+l,Yk' where Xk+l,j is the number of individuals suscepti-
ble in generation k who had j (out of Yk) infectious contacts. Note that i à ú N =Xk+l,j = 
ik+l and Xk+l,O = xk+l' This data extension separates the probability (1 - qYk) into 
the terms E ú â F =(1- q)jqYk-j. Estimation of this extended model is close to trivial. The 
log-likelihood is given by 

r-l Yk 

£(qj {Xk,O,Xk,I, ... ,Xk,Yk_l'yd) = c+ LLXk+l,j (jlog(l- q) + (Yk - j)logq). 
k=1 J=O 

Differentiating this and equating the likelihood equation to 0 reveals that the ML-
estimator for the extended data is 

",r-l ",Yk (.) ",r-l ",r-l ",Yk . 
A L-k=1 L-j=O Yk -] Xk+l,j L-k=1 YkXk - L-k=1 L-j=O ]Xk+l,J 
q = ",r-l "'Yk = ",r-l 

L-k=1 L-j=O YkXk+l,j L-k=1 YkXk 

Note that the estimator is simply the number of contacts not resulting in infection 
divided by the total number of contacts. Unfortunately the data Xk+l,l, . .. , Xk+l,Yk is 
not available. We therefore replace the unobserved quantities above by their expected 
values given the available data. For j ?: 1 we have 

(Yk)(l- q)JqYk-J 

E[Xk+ 1,jl{xk, yd; q] = ik+ 1 J 1 _ qYk 

This follows because each of the Yk individuals who were infected has a binomially 
distributed number of infectious contacts, a number conditioned on being positive. 
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The expectation of the negative term in the numerator of q i:i therefore Lk ik +1 (1 -
q)yk/(l - qYk). 

The EM-algorithm starts with an initial guess q(O) and then updates the estimate 
iteratively according to the iteration function 

%)= 1-

,\,r-I· (l-q()-J))Yk 
L..k=1 ú â H N = l-qrJk_l) 

i ú Wú =YkXk 

Iterating this function is very easy, since only the numerator has to be re-evaluated 
each iteration. In practice less than 10 iterations should suffice for the estimator to 
converge. 

The EM-algorithm has been used successfully in many ar'2as of statistics. In the 
analysis of infectious disease data it seems suitable for several problems but often 
methods remain to be developed. In Becker (1997) the EM-algorithm is applied to 
several problems, with a particular interest in HIV / AIDS data. 

Exercises 

10.1. Consider the data in Exercise 9.3 and adopt the same model assumptions. 
Estimate 8 and give the standard error assuming only the fina'! state is observed. 

10.2. During October/Kovember 1967 an outbreak of respiratory disease occurred 
on the isolated island of Tristan da Cunha (see Section 8.2.3 of Becker, 1989, for 
more details on on the data). Among the 255 individuals of the island 40 infections 
occurred. Assume that one individual was infected from outside and that all other 
individuals were susceptible to the disease (reasonable assumption). Estimate 8 and 
derive the standard error for the estimate under the simpEfying assumption of a 
homogeneous uniformly mixing population). 

10.3. The standard deviation of iJ based on complete ç Ä ú É ê î ~ í á ç å = of the epidemic 

process should be smaller than the standard deviation of iJ, but how much? Derive 
an expression for the ratio of the standard errors for the final size and complete data 
estimators. Compute the ratio numerically for eo = 1.5 and 80 = 2.5. (Hint: ese 
the expressions for the standard errors in Corollaries 9.6 and 10.2 and their large 
population limits.) 

10.4. Prove that j\1(t) = X(t)(l +8/n)n+/ln-X(t)-Y(t) is a martingale (this martingale 
is used by Becker and Hasofer, 1997, to construct an estimating equation). (Hint: 
Look at a small time increment 1I1(t + h) - J'\,l(t) and show that its expectation, 
conditioned on X(t) and Y(t), equals 0.) 

10.5. Table 10.1 below describes an outbreak of common cold in 664 households of 
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size:J (taken from Table 2.7, p 31, Becker, 1989). Each household has one introductory 
case, after this external infections can be-neglected. Infections are observed in terms 
of generations and infected individuals become infectious immediately and remain 
so over one generation only (this implies that Yk = ik using the notation of Section 
10.2). A chain 1 -+ 2 -+ 1 hence implies that (YI = 1, XI = 4), Y2 = 2, 1"2 = 2, 
Y3 = 1, :1.'3 = 1 and Y.l = 0, :I',j = 1 for this household, Usc the J<:J\f-algorithm to 
estimate q. the probability to escapp infpction from one infpctious individual over 
one gener:ltion, (\Vlwn estimating q you should use all households by treating each 
chain separately, That is, in the iterative estimator q(k) you should sum also over all 
households.) You may of course usc exact IvIL estimates if you prefer. 

Table 10,1, Outbreak chains for common cold in households of size 5 

Chain Obs, frequency 
1 423 
1 -+ 1 131 
1-+1-+1 36 
1 -+ 2 24 
1-+1-+1-+1 14 
1-+1-+2 8 
1-+2-+1 11 
1 -+ 3 3 
1-+1-+1-+1-+1 ,1 

1-+1-+1-+2 2 
1-+1-+2-+1 2 
1-+1-+3 2 
1-+2-+1-+1 3 
1-+2-+2 1 
1-+3-+1 0 
1 -+ '1 0 
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Markov Chain Monte Carlo (MCNIe) is a computer-intensive statistical tool that 
has received considerable attention over the past few years. Using MCMC theory, 
it is often quite simple to write efficient algorithms for sampling from extremely 
complicated target distributions; thus, it is not difficult to understand why these 
techniques have found important applications in a vast number of diff"erent areas. 
Although the literature on MCMC methods is growing rapidly, the excellent book 
by Gilks, Richardson and Spiegelhalter (1996) provides a good starting point for the 
interested reader. 

In the first two sections of this chapter we present the main ideas of MCMC, 
and apply the techniques to two important situations: Caleulc.ting expectations with 
respect to complicated probability measures, and optimizing complicated functions. 
The optimization method described can sometimes be a good alternative to the EM-
algorithm for calculating ML-estimators, but this point will not be developed further 
here. In Section 11.3 some practical issues arc discussed, å ú Ö ~ Ç á å Ö =e.g. convergence 
diagnostics. Finally, in Section 11.4 we describe a Bayesian approach for drawing 
inferences about basic parameters in stochastic epidemic models of the SIR type. 
(IVIost current applications of MCMC are oriented towards Bayesian inference, as are 
also those in the epidemic area. The example described here is taken from O'Neill 
and Roberts, 1999, but see also O'Neill et at., 199?) 

11.1 Description of the techniques 

The idea which lies behind Markov Chain Monte Carlo, first introduced by fvIctropo-
lis et al. (1953), is in fact very simple. Suppose that we wish to sample from some 
target distribution IT(X), x E E <:;; RP, which is known only up to some multiplicative 
constant. In situations where IT is sufficiently complex so that simple Monte Carlo 
methods cannot he used, an indirect sampling method would be to construct an ape-
riodic and irreducible Markov chain with state spare E whose '>tationary distribution 
is given by IT. This means that after having run the chain to stationarity, we can 
extract a (dependent) sample of any desired size from the target distribution. Some 
important questions immediately present themselves: 

• Is it always possible to construct a Markov chain with the desired properties? 

• How do we find a suitable starting point? 

• How do we determine the burn-in period, i.e. the number of iterat.ions needed 
until the chain is sufficiently close t.o stationarity'! 

• What are the implications of the fact that there are depeEdencies in the sample? 
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We answer the first question right away, leaving the other issues until Section 11.3. 

Constructing a Markov chain with state space E and stationary distribution 7r is 
surprisingly easy. We describe here the Metropolis-Hastings algorithm (see Hastings, 
1970), an algorithm that is easy to understand and implement. 

The Markov chain Xv, l/ = 0,1,2, ... , is started at some suitable point in E. 
Given Xv = x, the next state X v+1 is chosen by first sampling a candidate point 
Y from some proposal distribution q('1 x) and then accepting this candidate with 
probability a(x, V), where 

. ( 7r(y)q(x 1 y)) 
a(x, y) = mm 1, 7r(x)q(y I x) . (11.1 ) 

If Y is accepted then of course Xv+l = Y, otherwise X v+1 = Xv. As soon as a proposal 
distribution, suitable for the problem at hand, has been specified implementation of 
the Metropolis-Hastings algorithm is easy. Note that possibly nasty normalizing 
factors in the target distribution disappear, since only the ratio 7r(Y)/7r(x) is needed 
in the calculation of the acceptance probability a(x, y). 

We now argue that the distribution of Xv converges to the target distribution 7r 

as lJ --+ 00. The transition probability is given by 

P(y 1 x) = q(y 1 x)a(x, y) for all y #- x (acceptance), 

and 

P(xlx)=l- jq(Y1x)a(x,Y)dY (rejection) . 

By checking separately the cases where the quotient in (11.1) is below one and above 
one, respectively, it follows immediately that 

7r(x)q(y 1 x)a(x, y) = 7r(y)q(x 1 y)a(y, x), 

implying detailed balance for the chain: 

7r(x)P(y 1 x) = 7r(Y)P(x I y) 

for all x, y E E. Integrate both sides of the detailed balance equation with respect to 
x to obtain 

j 7r(x)P(y I x) dx = 7r(y) 

for all y E E. Thus 7r is stationary for the process X. Under weak regularity 
conditions on the proposal distribution it can be shown that X actually converges in 
distribution, regardless of the choice of initial value. 

The performance of the algorithm depends heavily on the form of the proposal 
distribution q. For computational efficiency, q should be chosen so that it can be 
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easily sampled and evaluated. On the other hand, q and 7f must be related in such a 
way that the acceptance probability 0: becomes reasonably larg-e; otherwise the chain 
might be mixing slowly (i.e. moving slowly around the support of 7f). 

Let us now briefly present three widely used updating schemes. The Metropolis 
algorithm assumes that q(y I x) = q(x I y) for all x, y E E. This is the case if e.g. the 
proposal only depends on the distance between the points x and y, q(y I x) = q(ly-xl). 
Then the acceptance probability reduces to 

. ( 7f(y)) O:(_7:,y)=rrlln l'7f(x) -

Another simple updating scheme, called the independence sampler, is obtained by 
putting q(y I x) = q(y), so that new candidate points are chosen without considering 
the present value of the chain. In this case, 

o:(x, y) = min (1, Wú ú á F =, 
where w(x) = 7f(x)/q(x). For the independence sampler to work well, q should be a 
fairly good approximation to 7f. 

Finally we describe the Gibbs sampler. Suppose that E is a subset of the possibly 
high-dimensional space RP. We run through the indices i, 1 ú = i ú = p, sequentially, 
and for a given index i we choose q(y Ix) as follows: 

q(y I x) = 7f(y, I Xl'" Xi-IXi+1 ... xp ) 

if Yj = Xj for all j -1= i, and q(y I x) = 0 otherwise. Thus the candidate point y 
is obtained by changing the ith coordinate of x according to the full conditional 
distribution. A quick calculation shows that 0:(1:, y) = 1 for all .7:, Y E E, meaning 
that new candidates are always accepted' The Gibbs sampler is particularly well 
suited to deal with spatial models, where the full conditional distribution of a single 
site often depends only on the nearest neighbouring sites and can consequently be 
written down easily. 

11.2 Important examples 

Calculating expectations 

The problem of calculating expectations of complicated high .. dimensional distribu-
tions arises in many situations. Let X be a random variable with distribution 7f(x), 
x E E ú =RP, and consider the expression 

E[J(Xl] = J J(x)7f(x) dx, 
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for some function f of interest. If it is possible to use classical Monte Carlo simulation 
to draw an independent sample Xv, 1 ::; II ::; n, with the correct distribution, then 
the time average 

(11.2) 

is guaranteed to provide an accurate approximation of E[f(X)] if only the sample size 
n is large enough. On the other hand, in cases where straightforward Monte Carlo 
methods fail, we may instead use MCMC to obtain a dependent sample Xv, 1 ::; II ::; 

n, and again form the time average (11.2). Under certain regularity conditions on the 
Markov chain (see e.g. Roberts and Smith, 1994), we may apply the ergodic theorem 
to show that the time average is consistent, i.e. 

1 n 

- Lf(Xv ) --+ E[J(X)] 
n 

v::::::: 1 

almost surely as n --+ 00. (A detailed presentation of ergodic theory lies beyond the 
scope of this text.) In practice, the values Xv from the burn-in period are usually 
discarded when calculating time averages. 

Stochastic annealing 

We now turn to another topic, namely optimization of non-standard functions us-
ing MCMC techniques. We are faced with the problem of minimizing a real-valued 
function f(x), x E E ú =RP, where for simplicity it is assumed that E consists of all 
the integer vectors inside some large box. Thus, every point x in E (excluding the 
boundary) has 2p nearest neighbours in E. Also, the optimal point, x say, is unique 
by assumption. Implicitly we assume that there is no good deterministic algorithm 
available to lead us to the vicinity of the optimal point x, as is often the case in real-
life problems. We will demonstrate how a series of well chosen Metropolis algorithms 
can be used to solve the problem. The technique is known as stochastic (or simulated) 
annealing. 

Given f3 > 0 we define the target distribution 

f3 _ e-f3f (x) 

7r (x) - ú = e-f3f(Y) ' 
L..JYEE 

x E E. 

The following Markov chain Xe, II ú = 1, will have 7rf3 as its stationary distribution. 
Start anywhere in E. Given Xe = x, propose one of the nearest neighbours at 
random, and call this point Y. Then accept the new point with probability a f3 (x, Y), 
where 

cl(x, y) = min (1, WWá ú ú F = = min (1, e- f3 [f(Y)-f(x)J) . 
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It is easily checked that this updating scheme corresponds to the Metropolis algorithm 
described in the last section, hence the theory tells us that 7r!3 is indeed the stationary 
distribution for X!3. 

The trick is now to run through a sequence of Metropolis algorithms according to 
the following scheme: 

• Take (3 > 0 and pick a starting point in E; 

• Run X!3 close to stationarity; 

• Increase (3 by a small amount, (3 -+ f3'; 

• With the old endpoint as starting point, run a new Markov chain XIJ' close to 
stationarity; 

• Increase (3' by a small amount, f3' -+ (3"; 

and so on. As f3 becomes large, 7r!3 becomes more and more peaked at the optimal 
point x, since 

e-!3f(x) 

7r!3(x) == L -IJf(y) 
yEE e 

c!3[J(x)- f(x)] 

LYEE e-!3[J(y)- floc)] , 

which tends to 1 as f3 -+ 00 if x == x, and otherwise tends to O. This indicates that 
a carefully tuned stochastic annealing scheme should lead us to the desired optimal 
point. It is very difficult, however, to give any guidance regarding good updating rules 
for (3, and proper stopping criteria for the Markov chains. There are many general 
theoretical results available, but each specific problem requires its own fine tuning 
and there will always be a certain amount of trial and error involved. 

11.3 Practical implementation issues 

As soon as an MCMC algorithm suitable for the problem at hand has been deter-
mined, practical questions like the determination of starting points, burn-in periods 
and sample sizes have to be addressed. Here we briefly discuss these issues. The 
problem of estimating the expectation E[t(X)], for some random variable X on E 
and some function J, by calculating time averages will serve as the main example 
throughout this section. 

Starting point 

First of all, we need a starting point for the Markov chain. A rapidly mixing chain 
will quickly find its way no matter how the starting value is chosen. On the other 
hand, some chains converge to stationarity very slowly unless the starting point is 
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chosen carefully. If several processors are available on the computer it is always a 
good idea to run chains in parallel, all of them starting at different values. 

Burn-in period 

In order to reduce the risk of inferential bias caused by the effect of starting values, 
iterates during a certain initial period are usually discarded. The length of this burn-
in period depends on the rate at which the Markov chain converges to stationarity. 
Ideally, we would like to compute this convergence rate, and use it to estimate the 
number of iteration steps needed. This is usually not a tractable problem: the power 
of MCMC methods lies in their ability to solve extremely complicated statistical 
problems, and complex MCMC solutions typically involve chains that are very difficult 
to analyse theoretically. 

It is preferable to use convergence diagnostics (for a review, see Cowles and Carlin, 
1994). Many different convergence diagnostics have been proposed in the literature, 
but they all have a common characteristic, namely that the sampler output is used in 
some way. Indeed, in many cases the output makes it obvious from the output when 
the initial transient period is over. We conclude by giving a simple rule of thumb that 
could be appropriate in some situations. If we are interested in estimating E[J(X)] 
by computing time averages, then Geyer (1992) argues that since the burn-in period 
is likely to be less than 1 % of the number of iterations needed to obtain adequate 
precision in the time average, we should concent.rate on calculating the total run 
length needed and then just discard 1 % of the iterations. 

Sample size 

How many iterations should we perform to ensure that our estimator is accurate 
enough? This question is also difficult to answer, because of the possible dependencies 
in the sample. \V'e propose here some simple ideas that can be useful in particular 
circumstances. 

First, if the iterates Xv are indeed independent, then (assuming stationarity) the 
standard deviation of the time average OWú Z N = f(Xv)/n is given by u/yTi, where (5 is 
the standard deviation of f(X). Alternatively, if the series can be approximated by 
a first order autoregressive process then the theory of time series tells us that the 
standard deviation of the time average is 

(5(f+P 
yTiV l=P' 

where p is the autocorrelation of the series f(Xv), and u the standard deviation as 
above. 
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Another simple device used is to thin the observations by saving only every kth 
value, thus ensuring that the resulting sequence will consist of more or less inde-
pendent values. In that case the simple sample mean av'kfr.: will again do the job. 
Finally, an obvious ad hoc method for determining the required run length is to run 
several chains in parallel, all with different starting points, and compare the resulting 
time averages. We shall not be satisfied until all of them agree adequately. 

11.4 Bayesian inference for epidemics 

In this final section we indicate why the development of MCMC methods has had 
such a profound effect on applied Bayesian statistics. Then, following O'Neill and 
Roberts (1999), we use MCMC to draw inferences on the infection probability when 
the final sizes of several household epidemics of Reed-Frost type are observed. We 
have deliberately chosen a very simple example, just to introduce the reader to the 
subject. The main topic in O'Neill and Roherts (1999) is inference on the infection and 
removal rates in the Markovian standard SIR epidemic model, after having observed 
the removal times. This investigation is also carried out using Markov Chain Monte 
Carlo in a Bayesian framework. Similar results can be achieved using other methods, 
see Becker and Hasofer (1997), but as soon as the models become slightly more 
complicated, e.g. by the introduction of latent periods, the flexibility in the MCMC 
approach becomes apparent. 

From a Bayesian perspective, there is no real difference between obscrvables and 
parameters of a statistical model: all are considered random quantities. Let D de-
note the observed data, and collect the model parameters and the missing data in a 
vector x. Then set up the joint distribution p(D, x) over all random quantities. This 
distribution can be written 

p(D, x) = p(x)L(D I x), 

where p(x) is the prior distribution of x and L(D I x) is the likelihood. Bayes'theorem 
is now used to determine the posterior distribution of x given the observed data: 

p(x I D) = p(x)L(D I x) 
J p(y)L(D I y) dy' 

This posterior distribution is the object of all Bayesian inference. 

The integral in the formula for p(x I D) above is in general very difficult to com-
pute, especially in high dimensions. However, by using the Metropolis-Hastings al-
gorithm for sampling from the target distribution 7r(:[) = p(:r I D) this problem is 
overcome very elegantly, since, as already noted below Eq. (11.1), normalizing fac-
tors in this target distribution never need to be computed. This is the main reason 
why MCMC has become such an important tool in Bayesian statistics. 
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Turning to the epidemic application, consider a population consisting of a number 
of households, each of size three. Start with one infectious individual in each house-
hold and run independent Reed-Frost epidemics. Denote the avoidance probability 
by q, so that 1 - q is the probability that a given infective infects a given susceptible 
household member. :"Jow, for j = 0,1,2, let NJ denote the number of households in 
which an epidemic of final size j has occurred. Our task is to estimate the avoidance 
probability q given the data D = (No, N I , N2)' 

Recall from Section 1.2 that, for a given household, 

P(Z = 0) = q2, P(Z = 1) = 2(1- q)q2, P(Z = 2) = (1 _ q)2 + 2(1- q)2q. 

Note that the first term in P(Z = 2) is the probability of having the entire household 
infected in one generation while the second term is the probability that it takes two 
generations to infect the household. Denoting by N2 the (unobserved) number of two 
generation-epidemics in the population, it follows that the likelihood function for q 
can be written 

C(q2)N0(2(1 _ q)q2)Nl((1 _ q)2)N2- N2(2(1 _ q)2q)N2 

C. 2Nl+N2q2No+2Nl+N2(1_ q)N1+2N2. 

Readers familiar with basic Bayesian statistics will notice from this equation that if 
a Beta(ex,o) distribution is chosen as the prior distribution of q, then the posterior 
distribution is given by 

(11.3) 

Also, since the household epidemics are assumed to be independent, we have that 

p(N21 D, q) ú =Bin (N2' ú F =. 
2q + 1 

(11.4) 

The Gibbs sampler of Section 11.1 can now be used to sample from the target dis-
tribution 7r(q, N2) = p(q, N21 D), since we have the expressions (11.3) and (11.4) for 
the corresponding conditional distributions. By introducing the extra variable N2 we 
were able to write the likelihood function in a convenient form, but the actual N2-

values will probably be regarded as uninteresting and may therefore not be included 
in the sample output. 

Exercises 

11.1. Show that the acceptance probability is 1 for the Gibbs sampler. 

11.2. Implement the Gibbs sampler described in Section 11.4, and estimate the 
avoidance probability q from the hypothetical data given in the Table 11.1 below. All 
households had 1 initially infective and 2 initially susceptible individuals. 
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Table 11.1. Household outbreaks 

Final Number of 
size households 

0 39 
1 26 
2 35 



12 Vaccination 

Perhaps the most important practical reason for the statistical analysis of epidemics 
lies in its application to vaccination policy. In the present chapter we focus on this 
topic. More precisely we consider the following question: who and how many individ-
uals should be vaccinated to prevent future epidemic outbreaks? In Section 12.1 we 
study this question for the standard SIR epidemic, and in Section 12.2 for endemic 
diseases, focusing on estimates and neglecting uncertainties. The chapter concludes 
with a section devoted to the estimation of the vaccine efficacy, which measures the 
reduction in susceptibility resulting from vaccination. In Sections 12.1 and 12.3 we 
make use of the multi type epidemic presented in Chapter 6, where the types consist 
of vaccinated and unvaccinated individuals. 

12.1 Estimating vaccination policies based on one epidemic 

Assume that the standard SIR epidemic En,m(>'" 1) is observed in a large community. 
If the epidemic was observed completely, we can estimate the basic reproduction 
number () using methods presented in Section 9.2 (see also the exercises); if the final 
size was observed, we use the methods of Section 10.]. Suppose now that a vaccine is 
available which reduces the transmission rate between an infectious and a vaccinated 
individual to A(l- r)/n. The corresponding rate for a susceptible individual is A/n, 
so r is the relative reduction, which is assumed to be known (its estimation is treated 
separately in Section 12.3). The important case of a perfect vaccine giving 100% and 
life-long immunity corresponds to r = 1. Based on the data from one outbreak, we 
wish to find the proportion Vc of the susceptible population, l;he critical vaccination 
coverage, that has to be vaccinated to prevent future outbreaks. 

\Ve first answer the question assuming () to be known. Suppose a proportion v is 
vaccinated, then the community consists of two types of individuals, unvaccinated and 
vaccinated, and the multi type model of Chapter 6 is relevant. Adopting the notation 
of Chapter 6, we have two types of individual, 1 and 2 (unvaccinated and vaccinated) 
with 7rl = 1 - v and 7r2 = v. The infection parameters satisfy All = A21 = A. 
A12 = A22 = A(l - r) and i[ = 1'2 = I.; we are implicitly assuming that vaccination 
only reduces the risk of becoming infected and not the infectivity once infected. The 
reproduction number, here denoted by Rv for obvious reasons, is then according to 
Section 6.2 the largest eigenvalue of the matrix with coefficients {l.iAij7rj}. For our 
specific case this eigenvalue is simply 

Rv = {.),(1- v) + /),(1 - r)v. (12.1) 

From Section 6.2 we know that a major outbreak is impossible if Rv -S 1. In terms 
of the proportion vaccinated v, this is equivalent to v ú = (1 - l/())/r (remember that 
() = ),{. ú =the reproduction number prior to vaccination). This means that the critical 
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Figure 12.1: Graph of the critical vaccination coverage Vc plotted against (). 

vaccination (or immunity) coverage vc , above which the population is protected from 
major outbreaks, is 

It may happen that Vc > 1 (if r is small and () large). The interpretation in this 
case is that the community is not protected from major outbreaks even when the 
whole community is vaccinated. The case with a perfect vaccine (r = 1) reduces to 
Vc = 1 - 1/(). The situation where the whole community, and not only vaccinated 
individuals, is protected from the epidemic is known as herd immunity. In Figure 
12.1 above Vc is plotted against the basic reproduction number () for t.he case of a 
perfect vaccine (i.e. r = 1). For example, if B is known to equal 5, as may be the 
case for influenza, then t.he critical vaccination coverage is Vc = 1 - 1/5 = 0.8 which 
means that at least 80% of the community should be vaccinated in order to prevent 
an out.break. 

We now consider the case where B is unknown. \Ve then estimate it from observa-
tion of one epidemic outbreak (prior to vaccination) using theory from Chapter 9 or 
10 depending on whether the epidemic is observed completely or only its final state 
is observed. Either way we get an estimate {) (in case of complete data {) = )'-y-1). 
\Ve obviously estimate Vc by 

(12.2) 
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Using the a-method, we_ obtain the consistent standard error s.e.(ve ) = s.e.(8)/riP. 
The standard error s.e. (e) depends on the type of data. For final size data it is given 
. ( _ _ ) 1/2 
111 Corollary 10.2; for complete data it equals (,),-1 x s.e.(>.))2 + (>. x s.e.(,),-I))2 , 

applying the o-method and the fact that the two parameter estimates are independent. 
A confidence interval for Ve is obtained using the estimate arrd the standard error, 
together with the asymptotic normality of the estimator. Here it is most natural to 
use a one-sided confidence interval, since under-estimation has worse consequences 
than over-estimation. 

In a heterogeneous community, the question of vaccination is more complex: now 
the effect of vaccination depends not only on the number vaccinated, but also on how 
individuals to be vaccinated are allocated. Suppose, for example, that the population 
consists of homogeneous individuals belonging to households where it is assumed that 
individuals mix at a higher rate within households, as in the model of Section 6.3. A 
relevant question is then how to select individuals for vaccination optimally, in the 
sense of most reducing the reproduction number. Is it better to spread vaccination 
over households or should one try to vaccinate certain households completely? Ball et 
al. (1997) show that for a sub-class of the model in Section 6.3 the optimal vaccina-
tion strategy is the 'equalizing' strategy. This strategy picks individuals sequentially 
from households with the largest number of remaining susceptible individuals, thus 
equalizing the number of remaining susceptibles in households. They conjecture this 
strategy to be optimal for the model in general. If instead the population is heteroge-
neous due to individual heterogeneities, such as varying infectivity and susceptibility, 
the same question of who to vaccinate is relevant. In case of equal infectivity one 
should vaccinate individuals with the highest susceptibility, but if the infectivity also 
varies there is no simple solution. Then there is a trade-off between high susceptibility 
and high infectivity in the optimal selection procedure. 

The following important general question concerning estimation and vaccination 
was posed by Becker (e.g. Becker and Utev, 1998). Suppose an epidemic outbreak 
was observed and we want to draw inferences on who and how many to vaccinate. 
For a given model a vaccination strategy can often be derived, as with the standard 
SIR epidemic above. The question is how vaccination strategies derived from different 
model assumptions are related. That is, if a vaccination strategy was derived under 
the assumption that the observed epidemic was from model A, say, but model B is 
the true model, is t.he community still under herd immunity? 

As an example, suppose 60% in a large, completely susceptible, community was 
infected during the epidemic season. With previous terminology we have 2 = 0.6 
and we may assume that J-L = 0 (i.e. there were only few initial infectives). Assuming 
the epidemic is the standard SIR epidemic we can apply resLlts from Chapter 10 to 
estimate Ro = e by 8 ::<; -In(1- 2)/2 = 1.53. The critical vaccination coverage 
for a vaccine resulting in 90% reduction of susceptibility (r =, 0.9) is then estimated 
from (12.2) as ve = 0.9- 1(1-1.53- 1) = 0.384. This means that at least 38.4% should 
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be vaccinated for the community to possess herd immunity. A relevant question is 
whether the community possesses herd immunity if a random sample of the commu-
nity of this size is vaccinated, when the model assumptions are false. Suppose that 
the community consisted of households, all of size four to keep things simple, and that 
the rate of transmission is higher within households. Is the community then protected 
from future outbreaks? Or suppose that in fact 40% of the females and 80% of the 
males were infected (implying that males are more susceptible). Is the community 
then under herd immunity? The answer to the first question for this specific example 
is 'yes', and to the second question 'no'. 

There is no general answer for the first type of question, i.e. whether neglecting 
the presence of households, can result in under-estimation of the critical vaccination 
coverage. Becker and Utev (1998) show that if all households are of equal size then 
the critical vaccination coverage is lower than if the data was collected from a ho-
mogeneous community without households. However, if households are of different 
sizes, as in real life, then the relation can go either way (the direction depends on 
the household structure and the proportion infected). If the critical vaccination cov-
erage is derived taking account of individual heterogeneities (men and women in the 
example above) then this proportion is always larger than the vaccination coverage 
derived neglecting heterogeneities (Britton, 1998b). 

The natural conclusion is, of course, that heterogeneities should be taken into 
account. When doing this, one can also devise better vaccination strategies than 
picking individuals at random. The question is still important because it is reasonable 
to believe that some heterogeneities, social and/or individual, are not observable 
and therefore not taken into account. The results mentioned above then state that 
outbreaks may in fact occur in the community even when the proportion vaccinated 
exceeds Ve , if Ve is derived neglecting some relevant heterogeneities. 

12.2 Estimating vaccination policies for endemic diseases 

The question of who and how many individuals to vaccinate is perhaps even more 
important for endemic diseases. The prime example of an endemic infectious disease 
which has been completely eradicated by vaccination is smallpox. Presently most 
childhood diseases are subject to vaccination policies in the western world, and these 
diseases are no longer endemic in most parts. It is not possible to vaccinate everyone 
for practical and ethical reasons (e.g. some religious communities oppose vaccination). 
To derive the necessary proportion Ve to vaccinate (the critical vaccination coverage) 
is hence of great importance. 

Below, we derive estimates for the two endemic models presented in Chapter 
8. Because of the rather complicated structure of these models we shall not derive 
standard errors but only estimates. Of course, the models are over-simplified in that 
the community is assumed to be homogeneous and individuals are assumed to mix 
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uniformly. Further, any seasonal effects are neglected, even though it is well-known 
that the beginning of school in the autumn usually implies outbreak peaks. Effects 
of vaccination policies, and their various estimation problems, for more realistic but 
deterministic models have been studied in many papers (e.g. Anderson and May, 
1991, and Greenhalgh and Dietz, 1994). 

The SIR model with demography 

Let us first consider the SIR model with demography of Section 8.1, which we re-
capitulate briefly. New individuals are born at rate On, an infectious individual has 
close contact with other individuals at rate A (any specific individual at rate A/n) and 
becomes removed at rate 'Y. Finally, each individual dies at rate 0 irrespective of her 
disease state. The bivariate Markov process (X, Y) = ((XU), Y(t)); t ú = O}, which 
keeps track of the number of susceptibles and infectives respectively, is specified by 
the starting point (n, /in) and its transition rates given in Section 8.1. Suppose now 
that a perfect vaccine is available, i.e. a vaccine giving life-long 100% immunity, and 
that a proportion v of all individuals are vaccinated at birth. The only transition rate 
that is affected is that susceptibles are born at rate 0(1 - v)n (the remaining new-
borns are vaccinated and immune). We can apply the same model and results, with 
slight changes in the parameters as follows. Let n' = n(l - v) so that susceptibles are 
born at rate On'. For the jump rates to be consistent with the rates of Section 8.1, we 
then have to write n' in the transition rate for new infections, and this can be done 
if we introduce X = A (1 - v). Thus, we have the model of Section 8.1 with n' and X 
replacing nand A. Consequently the reproduction number Rv after the vaccination 
scheme is started, is given by 

X A(I-v) 
Rv = --0 = 0 = (1 - v)Ro. 

'Y+ 'Y+ 

From properties of the model it then follows that the only stationary point is the 
disease-free state if Rv < 1. This is equivalent to v > 1 - 1/ Ro. The critical vaccina-
tion coverage is hence 

1 'Y+O 
vc = 1 - Ro = 1 - -A-· 

If Ro is unknown it may be estimated prior to vaccination by observing the community 
in its stationary state. From Section 8.1 we know that in case of endemicity, the sta-
tionary point for population proportions is given by (x, fj) = (Rol, (Ro - 1) (aRa)-l). 
From this it immediately follows that Ro is estimated by the inverse of XObSl the 
observed proportion of susceptibles: flo = l/xobs. To conclude, an estimate of the 
critical vaccination coverage Vc necessary to prevent future outbreaks is 

Vc = 1 - Xobs. (12.3) 

Consider as an example measles in the western world prior to vaccination. On the 
average a fraction of approximately 1/15 ú =7% had not yet experienced the disease 
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and were thus susceptible. This implies that Vc ú =93%, and a vaccination coverage 
above this value will eradicate the disease. The vaccination coverage of measles in 
the United States has by now exceeded 90% and the disease is no longer endemic -
only smaller local outbreaks still occur. This shows that the estimate is in the right 
ball park even though it is estimated from a simple model neglecting heterogeneities 
in the community as well as social and geographic structure. 

Because most individuals will experience the diseasp before dying, and all indi-
viduals live equally long on the average, the community proportion of susceptibles 
will coincide with the average fraction of an individual's life that she is susceptible. 
That is, the average age at infection divided by the average lifetime. Conversely, the 
average age of infection is the average lifetime divided by Ro. This explains the name 
'childhood disease': the (average) age of infection is small mainly because Ro is large, 
and not because of the special behaviour of children. For example, measles is believed 
to have Ro ú =15, so with an average lifetime of 75 years the formula states that the 
average age at infection is 75/15=5 years. 

The SIS model 

In the SIS model (Section 8.2), the community is fixed and new susceptibles arise 
not from births of new individuals but from infectious individuals recovering and 
becoming susceptible (in SIR models they become immune after recovery or die). An 
infectious individual has close contact with others at rate A (A In with any specific 
individual) and an infectious individual recovers and becomes susceptible at rate ,. 
The transition rates for the induced Markov process are given in Section 8.2 where 
properties of the model are also presented. The basic reproduction number satisfies 
Ro = AI, and the epidemic dies out quickly unless Ro > 1. Assume as in the 
previous paragraph that a perfect vaccine is available and that the proportion v of all 
individuals is vaccinated. This affects the transition rate corresponding to infection: 
if there are i infectives the number of susceptibles is n(1 - v) - i (and not n - i 
as it is prior to vaccination). However, if we replace n by n' = n(1 - v) and A by 
A' = A(l - v) the transition rates for the vaccinated community coincide with the 
rates of Section 8.2. From results of Section 8.2 it thus follows that the epidemic will 
surely become extinct if X h s: 1, which is equivalent to v ;::: I - ,I A. The critical 
vaccination coverage is therefore 

, I 
Vc = 1 - - = 1 - -. 

A Ro 

Prior to vaccination the proportion of susceptibles converges to ,IA = liRa. If Ro 
is unknown it can hence be estimated by the inverse of XObSl the observed proportion 
of susceptibles for a community in its stationary state. An estimate for the critical 
vaccination coverage is thus 

Vc = I - Xobs. 
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We see that this is the same estimate as in the SIR model wlth demography (12.3). 
The relation Vc = 1 - 1/ Ro holds for a larger class of models including the models 
assuming homogeneous mixing and a homogeneous communit.y. 

12.3 Estimation of vaccine efficacy 

We now proceed to estimate the parameter r defined in Section 12.1 as the relative 
reduction in the rate at which vaccinated individuals become infected by infectious 
individuals, compared with the rate for unvaccinated individuals (the rate for un-
vaccinated is )../n and )..(1 - r)/n for vaccinated). It is assumed that the infectivity 
of vaccinated individuals is unchanged. That is, if a vaccinated individual becomes 
infected she is infectious as she would have been if not vaccinated. We estimate r 
assuming that we observe the standard SIR epidemic in which part of the community 
is vaccinated and the rest arc not. To keep things simple we assume a large commu-
nity in which a negligible fraction is vaccinated. Alternative methods for estimating 
r can be derived from a matched pair study, for example with sibling pairs where one 
sibling is vaccinated and the other is not. 

Assume that a sample of size v among the n susceptibles (-If v = v/n being negligi-
ble) were selected and vaccinated prior to the epidemic. After the epidemic outbreak 
has run its course, a proportion Zu of the unvaccinated and a proportion Zv of the 
vaccinated are found to have been infected. The initial proportion of infectives is 
assumed to be small. The overall proportion infected is Z = 7rvZv + (1 -7rv)Zu ::::; Zu. 
According to Section 6.2, in case of a major outbreak (Zu, Zv) converges in probability 
to (Tu, Tv), the positive solution of 

1 - Tu 

1 - Tv 

e -t>'(1I'v Tv+(1-1I'v )Tu) 

e-(I-r)t>'(7rv Tv +(1-1I'v)Tu ) . 

From these equations it follows that 1 - r = 10g(1 - Tv)/log(l- Tu)' Replacing the 
limiting quantities by the corresponding observed values gives an estimate of r: 

(12.4) 

Up until now, we have not made use of the assumption that the proportion vaccinated 
7rv is small, and consequently the estimate is consistent without this assumption. A 
standard error for the estimate can also be derived for the general case using the 
central limit theorem of Ball and Clancy (1993) presented in Section 6.2. Here we 
treat the simpler case with 7rv assumed to be small. This implies that Zu can be 
treated as deterministic in comparison with Zv. Because the proportion vaccinated is 
negligible these individuals do not affect the overall proportion infected. Thus, each 
vaccinated individual behaves more or less independently and becomes infected with 
probability Tv = 1- e-(I-r)t>'(7rv Tv +(I-7rv )Tu ). Consequently Zv is binomially distributed 
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with parameters 1/ and Tv' Treating Zu as deterministic, we see from equation (12.4) 
that the variance of f equals the variance of log(l - Zv) divided by (log(l - Z,,))2 
Expanding log(l- Zv) in a Taylor series, and applying the 6-method it Ñ ç ä ä ç ï ú = that the 
variance of log(l - Zv) approximately equals the variance of Zv divided by (1 - Tv)2 

Finally, the variance of Zv is Tv(l - Tv)/V since Zv is binomially distributed, and this 
may be estimated by Zv(l - Zv)/I.I. A consistent estimate of the standard deviation 
of f is thus 

As an example, suppose that in a large community 50% of the unvaccinated were 
infected while only 10% in the sample of 1.1 = 200 vaccinated individuals were infected. 
This means Zu = 0.5 and Zv = 0.1. Equations (12.4) then gives f = 0.848 and 
s.e.(f) = 0.034 from (12.5). 

The parameter T measures the reduction in transmission which is a natural mea-
sure of the efficacy of a vaccine. Traditionally however, the definition of the vaccine 
efficacy V E is 

ZV VE = 1- ú =
Z' u 

using the terminology of the present section. This measure is not a very satisfactory 
single measure of the vaccine efficacy because it depends on the proportion vaccinated 
and on the community from which data come. That is, one would get a different 
estimate if a larger/smaller proportion were vaccinated prior to the epidemic, and 
also in a different community in which individuals mix at higher/lower rate. The 
parameter T is to be preferred, as it does not have these unsatisfactory properties. 

Exercises 

12.1. Check that the formula for Rv, given in equation (12.1), actually gives the 
largest eigenvalue to the specified matrix. 

12.2. As discussed in the introduction of Part II and in Exercise 9.4 the estimates 
of Part II can be modified to cover the case with initially immune individuals (for 
simplicity the text is written assuming no initially immune individuals). Suppose the 
proportion initially infectious is negligible (p. ::::; 0) and that s is the initial proportion 
susceptible. Then it is not hard to show (simply by transforming parameters) that the 
ultimate proportion infected among the initially susceptibZes converges in probability 
to a solution of the equation 1 - eeST to be compared with equation (4.2) for the case 
with no initially immunes (remember that B = AI,). This implies that the estimates of 
the present section are not estimates of () but of Bs. Derive estimates and confidence 
bounds for Band Vc assuming that the initial proportion susceptible s is known and 
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where data consists of knowing the observed proportion infected among those initially 
suceptible. 

12.3. Estimate and derive standard error for the critical vaccination coverage Vc for 
the smallpox outbreak presented in Exercise 9.3. 

a) assuming complete data. 

b) assuming that only the final state is observed (see Exercis'2 10.1). 

12.4. Estimate Vc for the Tristan da Cunha outbreak presented in Exercise 10.2. 

12.5. Suppose that 10 years is the average age at infection of some childhood disease 
in a society with average life-length of 70 years. Assume that the SIR model with de-
mography applies and derive an estimate of V e , the proportion necessary to vaccinate 
to surely prevent future outbreaks. 

12.6. Suppose a hypothetical vaccine trial resulted in 16 infected individuals among 
the sample of 185 vaccinated individuals whereas 42% of the remaining (large number 
of) individuals were infected. Derive an estimate of the reduction parameter T and 
give a standard error for the estimate. 
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